Special Issue of Symmetry: “Symmetry in Mathematical Analysis and Functional Analysis”
- Common fixed-point results in general metric space settings and applications.
- Constrained optimization.
- Optimal control.
- Solving systems of special differential equations.
- Applications of fractional calculus.
- Inclusion and inequalities in interval-valued pre-invex and convex functions.
- Fuzzy fractional integral inequalities in pre-invex fuzzy interval-valued functions.
- Multi-objective convex optimization in real Banach space.
- Well-posedness for certain classes of equations.
- Families of convex operators and related linear operators.
- Symmetry of sublinear continuous operators and its applications (see [11]).
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Liu, X. Relation-theoretic coincidence and common fixed-point results in extended rectangular b—Metric spaces with applications. Symmetry 2022, 14, 1588. [Google Scholar] [CrossRef]
- Licea, G.S. Sufficiency for weak minima in optimal control subject to mixed constraints. Symmetry 2022, 14, 1520. [Google Scholar] [CrossRef]
- Alansari, M.; Ali, M.U. Abstraction of interpolative Reich-Rus Ćirić-type contractions and simplest proof technique. Symmetry 2022, 14, 1504. [Google Scholar] [CrossRef]
- Hammad, H.A.; Zayed, M. Solving a system of differential equations with infinite delay by using tripled fix point techniques on graphs. Symmetry 2022, 14, 1388. [Google Scholar] [CrossRef]
- Stojiljcović, V.; Radojević, S.; Çetin, E.; Čavić, V.S.; Radenović, S. Sharp bounds for trigonometric and hyperbolic functions with applications to fractional calculus. Symmetry 2022, 14, 1260. [Google Scholar] [CrossRef]
- Lai, K.K.; Mishra, S.K.; Bisht, J.; Hassan, M. Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions. Symmetry 2022, 14, 771. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Treanţă, S.; Santos-Garcia, G.; Macias-Diaz, J.E.; Soliman, M.S. Fractional calculus for convex functions in interval-valued settings and inequalities. Symmetry 2022, 14, 341. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Macias-Diaz, J.E.; Treanţă, S.; Soliman, M.S. Some fuzzy Riemann-Louville fractional integral inequalities for preinvex fuzzy interval-valued functions. Symmetry 2022, 14, 313. [Google Scholar] [CrossRef]
- Lai, K.K.; Hassan, M.; Maurya, J.K.; Singh, J.K.; Mishra, S.K. Multiobjective convex optimization in real Banach space. Symmetry 2021, 13, 2148. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, B. The well posedness for nonhomogeneous Boussinesq equations. Symmetry 2021, 13, 2110. [Google Scholar] [CrossRef]
- Olteanu, O. On special properties for continuous convex operators and related linear operators. Symmetry 2022, 14, 1390. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Olteanu, O. From the Hahn-Banach extension theorem to the isotonicity of convex functions and the majorization theory. Rev. R. Acad. Cienc. Exactas Fis. Nat. 2020, 114, 171. [Google Scholar] [CrossRef]
- Cristescu, R. Ordered Vector Spaces and Linear Operators; Academiei: Bucharest, Romania; Abacus Press: Tunbridge Wells, UK, 1976. [Google Scholar]
- Haviland, E.K. On the momentum problem for distributions in more than one dimension. Am. J. Math. 1936, 58, 164–168. [Google Scholar] [CrossRef]
- Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; Oliver and Boyd: Edinburgh, UK, 1965. [Google Scholar]
- Schmüdgen, K. The Moment Problem. In Graduate Texts in Mathematics; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Kutateladze, S.S. Convex operators. Russ. Math. Surv. 1979, 34, 181–214. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Book Company: Singapore, 1987. [Google Scholar]
- Marshall, M. Polynomials non-negative on a strip. Proc. Am. Math. Soc. 2010, 138, 1559–1567. [Google Scholar] [CrossRef] [Green Version]
- Berg, C.; Christensen, J.P.R.; Jensen, C.U. A remark on the multidimensional moment problem. Math. Ann. 1979, 243, 163–169. [Google Scholar] [CrossRef]
- Berg, C.; Christensen, J.P.R.; Ressel, P. Harmonic Analysis on Semigroups; Theory of Positive Definite and Related Functions; Springer: New York, NY, USA, 1984. [Google Scholar]
- Berg, C.; Thill, M. Rotation invariant moment problems. Acta Math. 1991, 167, 207–227. [Google Scholar] [CrossRef]
- Berg, C.; Durán, A.J. The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function. Math. Scand. 2008, 103, 11–39. [Google Scholar] [CrossRef] [Green Version]
- Fuglede, B. The multidimensional moment problem. Exp. Math. 1983, 1, 47–65. [Google Scholar]
- Cassier, G. Problèmes des moments sur un compact de et décomposition des polynȏmes à plusieurs variables (Moment problems on a compact subset of and decomposition of polynomials of several variables). J. Funct. Anal. 1984, 58, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Schmüdgen, K. The K-moment problem for compact semi-algebraic sets. Math. Ann. 1991, 289, 203–206. [Google Scholar] [CrossRef]
- Putinar, M. Positive polynomials on compact semi-algebraic sets. IU Math. J. 1993, 42, 969–984. [Google Scholar] [CrossRef]
- Putinar, M.; Vasilescu, F.H. Problème des moments sur les compacts semi-algébriques (The moment problem on semi-algebraic compacts). Comptes Rendus Acad. Sci. Paris Ser. I 1996, 323, 787–791. [Google Scholar]
- Vasilescu, F.H. Spectral measures and moment problems. In Spectral Analysis and Its Applications (Ion Colojoară Anniversary Volume); Theta: Bucharest, Romania, 2003; pp. 173–215. [Google Scholar]
- Gosse, L.; Runborg, O. Resolution of the finite Markov moment problem. Comptes Rendus Acad. Sci. Paris 2005, 341, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Gosse, L.; Runborg, O. Existence, uniqueness, and a constructive solution algorithm for a class of finite Markov moment problems. SIAM J. Appl. Math. 2008, 68, 16181640. [Google Scholar] [CrossRef] [Green Version]
- Tagliani, A. Maximum entropy solutions and moment problem in unbounded domains. Appl. Math. Lett. 2003, 16, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Inverardi, P.L.N.; Tagliani, A. Stieltjies and Hamburger reduced moment problem when MaxEnt solution does not exist. Mathematics 2021, 9, 309. [Google Scholar] [CrossRef]
- Stochel, J. Solving the truncated moment problem solves the full moment problem. Glasg. Math. J. 2001, 43, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Lemnete, L. An operator-valued moment problem. Proc. Am. Math. Soc. 1991, 112, 1023–1028. [Google Scholar] [CrossRef]
- Lemnete-Ninulescu, L.; Zlătescu, A. Some new aspects of the L-moment problem. Rev. Roum. Math. Pures Appl. 2010, 55, 197–204. [Google Scholar]
- Cobzaş, Ș. Geometric properties of Banach spaces and the existence of nearest and farthest points. Abstr. Appl. Anal. 2005, 2005, 424030. [Google Scholar] [CrossRef] [Green Version]
- Cobzaş, Ș. Ekeland variational principle and its equivalents in quasi-uniform spaces. Optimization 2022, 1–32. [Google Scholar] [CrossRef]
- Pakkaranang, N.; Kumam, P.; Cho, Y.J. Proximal point algorithms for solving convex minimization problem and common fixed points of asymptotically quasi-nonexpansive mappings in in CAT(0) spaces with convergenece analysis. Numer Algorithms 2018, 78, 827–845. [Google Scholar] [CrossRef]
- Dong, Q.-L.; Cho, Y.J.; Rassias, T.M. The projection and contraction methods for finding common solutions for variational inequalitiy problems. Optim. Lett. 2018, 12, 1871–1896. [Google Scholar] [CrossRef]
- Sahu, D.R.; Cho, Y.J.; Dong, Q.L.; Kashyap, M.R.; Li, X.H. Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces. Numer Algorithms 2021, 87, 1075–1095. [Google Scholar] [CrossRef]
- Krein, M.G.; Nudelman, A.A. Markov Moment Problem and Extremal Problems; American Mathematical Society: Providence, RI, USA, 1977. [Google Scholar]
- Olteanu, O. Application de théorèmes de prolongement d’opérateurs linéaires au problème des moments e à une generalization d’un théorème de Mazur-Orlicz (Applications of theorems on extension of linear operators to the moment problem and to a generalization of Mazur-Orlicz theorem). Comptes Rendus Acad. Sci. Paris 1991, 313, 739–742. [Google Scholar]
- Stoyanov, J.M.; Lin, G.D.; Kopanov, P. New checkable conditions for moment determinacy of probability distributions. SIAM Theory Probab. Appl. 2020, 65, 497–509. [Google Scholar] [CrossRef]
- Olteanu, O. From Hahn-Banach type theorems to the Markov moment problem, sandwich theorems and further applications. Mathematics 2020, 8, 1328. [Google Scholar] [CrossRef]
- Olteanu, O. Polynomial approximation on unbounded subsets, Markov moment problem and other applications. Mathematics 2020, 8, 1654. [Google Scholar] [CrossRef]
- Olteanu, O. On Markov moment problem and related results. Symmetry 2021, 13, 986. [Google Scholar] [CrossRef]
- Olteanu, O. On Hahn-Banach theorem and some of its applications. Open Math. 2022, 20, 366–390. [Google Scholar] [CrossRef]
- Olteanu, O. Convexity, Extension of Linear Operators, Approximation and Applications; Cambridge Scholars Publishing: Newcastle upon Tyne, UK; Lady Stephenson Library: Newcastle upon Tyne, UK, 2022. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olteanu, O. Special Issue of Symmetry: “Symmetry in Mathematical Analysis and Functional Analysis”. Symmetry 2022, 14, 2665. https://doi.org/10.3390/sym14122665
Olteanu O. Special Issue of Symmetry: “Symmetry in Mathematical Analysis and Functional Analysis”. Symmetry. 2022; 14(12):2665. https://doi.org/10.3390/sym14122665
Chicago/Turabian StyleOlteanu, Octav. 2022. "Special Issue of Symmetry: “Symmetry in Mathematical Analysis and Functional Analysis”" Symmetry 14, no. 12: 2665. https://doi.org/10.3390/sym14122665