Next Article in Journal
Phase Sensitivity Improvement in Correlation-Enhanced Nonlinear Interferometers
Previous Article in Journal
A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Simplification and Generalization of Elsayed and Ibrahim’s Two-Dimensional System of Third-Order Difference Equations

by
Mensah Folly-Gbetoula
*,† and
Darlison Nyirenda
School of Mathematics, University of the Witwatersrand, Johannesburg 2050, South Africa
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2022, 14(12), 2683; https://doi.org/10.3390/sym14122683
Submission received: 7 November 2022 / Revised: 5 December 2022 / Accepted: 10 December 2022 / Published: 19 December 2022
(This article belongs to the Section Mathematics)

Abstract

:
A full Lie analysis of a system of third-order difference equations is performed. Explicit solutions, expressed in terms of the initial values, are derived. Furthermore, we give sufficient conditions for the existence of two-periodic and four-periodic solutions in certain cases. Our results generalize and simplify some work in the literature.

1. Introduction

The area of difference equations has attracted many researchers recently (see [1,2,3,4,5,6]). Methods for solving difference equations have been developed (see [7,8,9,10,11,12,13,14,15]) and the Lie symmetry approach is one of them. One of the most useful algorithms for computing the symmetries of difference equations is due to Hydon (see [12]). The Lie symmetry group of a system of difference equations is the largest group of point transformations acting on the space of dependent and independent variables that leave the equations unchanged. Thus, an element of such a group maps a solution of the difference equation onto another solution. In this method, the order of the difference equation is reduced, and using the invariance of the equation under group transformations or via the similarity variables, one can find the exact solutions. For more on symmetries, conservation laws and invariants, refer to [16,17].
In this paper, by applying the Lie symmetry method, we generalize some results in [18], where Elsayed and Ibrahim investigated the periodic nature and the form of the solutions of a nonlinear system of difference equations of order three:
x n + 1 = x n 2 y n 1 y n ( ± 1 ± 1 x n 2 y n 1 ) , y n + 1 = y n 2 x n 1 x n ( ± 1 ± 1 y n 2 x n 1 ) .
We study the system
x n + 1 = x n 2 y n 1 y n ( a n + b n x n 2 y n 1 ) , y n + 1 = y n 2 x n 1 x n ( c n + d n y n 2 x n 1 ) ,
where ( a n ) n Z 0 , ( b n ) n Z 0 are non-zero real sequences, and x 2 , x 1 , x 0 , y 2 , y 1 and y 0 are initial values. Because of the definitions and notation we want to use, we study the equivalent system
x n + 3 = x n y n + 1 y n + 2 ( A n + B n x n y n + 1 ) , y n + 3 = y n x n + 1 x n + 2 ( C n + D n y n x n + 1 ) ,
where ( A n ) n Z 0 , ( B n ) n Z 0 are non-zero real sequences.
In coming up with the solutions of (2) using the Lie symmetry method, we first find the Lie algebra of (2). We then reduce the order of the equations by utilizing the invariants and later use iterations to deduce the solutions.

Preliminaries

In this section, we give the background of the Lie symmetry analysis. The notation used comes from [12].
Definition 1
([19]). Let G be a local group of transformations acting on a manifold M. A subset S M is called G-invariant, and G is called symmetry group of S , if whenever x S , and g G is such that g · x is defined, then g · x S .
Definition 2
([19]). Let G be a connected group of transformations acting on a manifold M. A smooth real-valued function ζ : M R is an invariant function for G if and only if
X ( ζ ) = 0 for all x M ,
and every infinitesimal generator X of G.
Definition 3
([12]). A parameterized set of point transformations,
Γ ε : x x ^ ( x ; ε ) ,
where x = x i , i = 1 , , p are continuous variables, is a one-parameter local Lie group of transformations if the following conditions are satisfied:
1.
Γ 0 is the identity map if x ^ = x when ε = 0 .
2.
Γ a Γ b = Γ a + b for every a and b sufficiently close to 0.
3.
Each x i ^ can be represented as a Taylor series (in a neighborhood of ε = 0 that is determined by x), and therefore
x i ^ ( x : ε ) = x i + ε ξ i ( x ) + O ( ε 2 ) , i = 1 , . . . , p .
Consider the system of ordinary difference equations
x n + 3 = Ω 1 ( x n , x n + 1 , x n + 2 , y n , y n + 1 , y n + 2 ) , y n + 3 = Ω 2 ( x n , x n + 1 , x n + 2 , y n , y n + 1 , y n + 2 ) , n D
for some smooth function Ω = ( Ω 1 , Ω 2 ) and a regular domain D Z . To find a symmetry group of (6), we consider the group of infinitesimal point transformations given by
G ε : ( x n , y n ) ( x n + ε Q 1 ( n , x n ) , y n + ε Q 2 ( n , y n ) ) ,
where ε is the parameter and Q i , i = 1 , 2 , the continuous functions which we shall refer to as characteristics. Let
X = Q 1 ( n , x n ) x n + Q 2 ( n , y n ) y n
be the corresponding infinitesimal generator of G ε with the k-th extension
X = Q 1 x n + Q 2 y n + S Q 1 x n + 1 + S Q 2 y n + 1 + S 2 Q 1 x n + 2 + S 2 Q 2 y n + 2 .
Note that S is the forward shift operator, acting on n as follows: S : n n + 1 . Further, the linearized symmetry conditions are given by
S ( 3 ) Q 1 X Ω 1 = 0 , S ( 3 ) Q 2 X Ω 2 = 0 .
Once a characteristic Q i is known, the invariant ζ i may be obtained by introducing the canonical coordinate [20]
s n = d x n Q 1 ( n , x n ) and t n = d y n Q 2 ( n , y n ) .
In general, the constraints on the constants in the characteristics give one a clear idea (without any lucky guess) about the perfect choice of invariants.
The paper is organized as follows: In Section 2, we discuss the symmetries, reductions and exact solutions of (3). In Section 3, we look at the solutions of (2), and in Section 4, we discuss the periodicity of some solutions.

2. Symmetries, Reductions and Exact Solutions of (3)

Consider the system (3), that is,
x n + 3 = x n y n + 1 y n + 2 ( A n + B n x n y n + 1 ) , y n + 3 = y n x n + 1 x n + 2 ( C n + D n y n x n + 1 ) .

2.1. Symmetries

To obtain the symmetries, we impose the infinitesimal criterion of invariance (10) to obtain
( S 3 Q 1 ) + ( B n x n y n + 1 + A n ) x n y n + 1 ( S 2 Q 2 ) A n x n y n + 2 ( S Q 2 ) A n y n + 1 y n + 2 Q 1 ( B n x n y n + 1 + A n ) 2 = 0 ,
( S 3 Q 2 ) + ( D n y n x n + 1 + C n ) y n x n + 1 ( S 2 Q 1 ) C n y n x n + 2 ( S Q 1 ) C n x n + 1 x n + 2 Q 2 ( D n y n x n + 1 + C n ) 2 = 0 .
These are functional equations for the characteristics Q i , i = 1 , 2 . To eliminate the first undesirable arguments x n + 3 and y n + 3 , we apply the differential operator x n y n + 1 x n y n + 1 on (13) and y n x n + 1 y n x n + 1 on (14), and the following expressions are obtained after simplification:
y n + 1 ( S Q 2 ) y n + 1 Q 1 S Q 2 + y n + 1 x n Q 1 = 0
and
x n + 1 ( S Q 1 ) x n + 1 Q 2 S Q 1 + x n + 1 y n Q 2 = 0 .
To eliminate the second undesirable arguments x n + 1 and y n + 1 , we differentiate (15) with respect to x n and differentiate (16) with respect to y n . This yields
x n 2 Q 1 ( n , x n ) + y n Q 2 ( n , y n ) Q 2 ( n , 2 n ) = 0
and
y n 2 Q 2 ( n , y n ) + y n Q 2 ( n , y n ) Q 2 ( n , y n ) = 0 .
Solving the resulting differential equations for Q 1 and Q 2 gives
Q 1 ( n , x n ) = α n x n + β n x n ln x n
and
Q 2 ( n , y n ) = λ n y n + μ n y n ln y n ,
where α n , β n , λ n and μ n are arbitrary functions of n. We gain more information on these functions by substituting Equations (19) and (20) in Equations (13) and (14). The resulting equations can be solved by the method of separation which yields the following systems:
y n + 1 x n 2 : λ n + 2 + α n + 3 = 0 x n : λ n + 2 + α n + 3 α n λ n + 1 = 0
and
x n + 1 y n 2 : β n + 2 + λ n + 3 = 0 y n : β n + 2 + λ n + 3 λ n α n + 1 = 0
or simply
λ n + α n + 1 = 0 , and α n + λ n + 1 = 0 .
It turns out that β n and μ n are zero. From (23), we can see that λ n + 2 λ n = 0 . Thus, the solutions of (23) are given by α n = λ n = ( 1 ) n , and therefore the characteristics are as follows:
Q 1 = ( 1 ) n x n , Q 2 = ( 1 ) n y n .
The Lie algebra of (2) is then spanned by
X = ( 1 ) n x n x n ( 1 ) n y n y n .

2.2. Reduction and Solutions

Using (11) and (24), we found that the canonical coordinates are given by
s n = ( 1 ) n ln | x n | and t n = ( 1 ) n + 1 ln | y n | .
We replace α n and its shift (resp λ n and its shift) with s n α n and its shift (resp t n λ n and its shift) in (23) and the left-hand sides of the resulting equations give the invariants:
U ˜ n = ln | x n y n + 1 | and V ˜ n = ln | x n + 1 y n | .
The reader can verify that X [ U ˜ n ] = X [ V ˜ n ] = 0 . For the sake of convenience, we consider
U n = exp { U ˜ n } and V n = exp { V ˜ n }
instead or simply U n = ± 1 / ( x n y n + 1 ) and V n = ± 1 / ( x n + 1 y n ) . Using the plus sign, this leads to
V n + 2 = A n U n + B n and U n + 2 = C n V n + D n .
For the equations in (29), replace V n in the second equation by A n 2 U n 2 + B n 2 to obtain U n + 2 = C n A n 2 U n 2 + C n B n 2 + D n which implies
U n + 4 = C n + 2 A n U n + C n + 2 B n + D n + 2 .
Iterating several times, one obtains
U 4 n + j = U j k 1 = 0 n 1 A 4 k 1 + j C 4 k 1 + j + 2 + l = 0 n 1 ( B 4 l + j C 4 l + j + 2 + D 4 l + j + 2 ) k 2 = l + 1 n 1 A 4 k 2 + j C 4 k 2 + j + 2
where j = 0 , 1 , 2 , 3 . Similarly, we have
V 4 n + j = V j k 1 = 0 n 1 A 4 k 1 + j + 2 C 4 k 1 + j + l = 0 n 1 ( A 4 l + j + 2 D 4 l + j + B 4 l + j + 2 ) k 2 = l + 1 n 1 A 4 k 2 + j + 2 C 4 k 2 + j
where 0 j 3 .
The equations U n = 1 / ( x n y n + 1 ) and V n = 1 / ( x n + 1 y n ) imply that
x n + 2 = U n V n + 1 x n and y n + 2 = V n U n + 1 y n
which yield
x 2 n + j = x j i = 0 n 1 U 2 i + j V 2 i + j + 1 and y 2 n + j = y j i = 0 n 1 V 2 i + j U 2 i + j + 1
where j = 0 , 1 .
Hence, we have
x 4 n + j = x j i = 0 n 1 U 4 i + j U 4 i + 2 + j V 4 i + j + 1 V 4 i + j + 3
and
y 4 n + j = y j i = 0 n 1 V 4 i + j V 4 i + 2 + j U 4 i + j + 1 U 4 i + j + 3
where j = 0 , 1 , 2 , 3 .
Substituting specific values of j and using (35) and (36), we have:
x 4 n = x 0 s = 0 n 1 U 4 s U 4 s + 2 V 4 s + 1 V 4 s + 3 = x 0 s = 0 n 1 U 0 k 1 = 0 s 1 A 4 k 1 C 4 k 1 + 2 + l = 0 s 1 ( B 4 l C 4 l + 2 + D 4 l + 2 ) k 2 = l + 1 s 1 A 4 k 2 C 4 k 2 + 2 V 1 k 1 = 0 s 1 A 4 k 1 + 3 C 4 k 1 + 1 + l = 0 s 1 ( A 4 l + 3 D 4 l + 1 + B 4 l + 3 ) k 2 = l + 1 s 1 A 4 k 2 + 3 C 4 k 2 + 1 × U 2 k 1 = 0 s 1 A 4 k 1 + 2 C 4 k 1 + 4 + l = 0 s 1 ( B 4 l + 2 C 4 l + 4 + D 4 l + 4 ) k 2 = l + 1 s 1 A 4 k 2 + 2 C 4 k 2 + 4 V 3 k 1 = 0 s 1 A 4 k 1 + 5 C 4 k 1 + 3 + l = 0 s 1 ( A 4 l + 5 D 4 l + 3 + B 4 l + 5 ) k 2 = l + 1 s 1 A 4 k 2 + 5 C 4 k 2 + 3 ,
y 4 n = y 0 s = 0 n 1 V 0 k 1 = 0 s 1 A 4 k 1 + 2 C 4 k 1 + l = 0 s 1 ( A 4 l + 2 D 4 l + B 4 l + 2 ) k 2 = l + 1 s 1 A 4 k 2 + 2 C 4 k 2 U 1 k 1 = 0 s 1 A 4 k 1 + 1 C 4 k 1 + 3 + l = 0 s 1 ( B 4 l + 1 C 4 l + 3 + D 4 l + 3 ) k 2 = l + 1 s 1 A 4 k 2 + 1 C 4 k 2 + 3 × V 2 k 1 = 0 s 1 A 4 k 1 + 4 C 4 k 1 + 2 + l = 0 s 1 ( A 4 l + 4 D 4 l + 2 + B 4 l + 4 ) k 2 = l + 1 s 1 A 4 k 2 + 4 C 4 k 2 + 2 U 3 k 1 = 0 s 1 A 4 k 1 + 3 C 4 k 1 + 5 + l = 0 s 1 ( B 4 l + 3 C 4 l + 5 + D 4 l + 5 ) k 2 = l + 1 s 1 A 4 k 2 + 3 C 4 k 2 + 5 ,
x 4 n + 1 = x 1 s = 0 n 1 U 4 s + 1 U 4 s + 3 V 4 s + 2 V 4 s + 4 = x 1 s = 0 n 1 U 1 k 1 = 0 s 1 A 4 k 1 + 1 C 4 k 1 + 3 + l = 0 s 1 ( B 4 l + 1 C 4 l + 3 + D 4 l + 3 ) k 2 = l + 1 s 1 A 4 k 2 + 1 C 4 k 2 + 3 V 2 k 1 = 0 s 1 A 4 k 1 + 4 C 4 k 1 + 2 + l = 0 s 1 ( A 4 l + 4 D 4 l + 2 + B 4 l + 4 ) k 2 = l + 1 s 1 A 4 k 2 + 4 C 4 k 2 + 2 × U 3 k 1 = 0 s 1 A 4 k 1 + 3 C 4 k 1 + 5 + l = 0 s 1 ( B 4 l + 3 C 4 l + 5 + D 4 l + 5 ) k 2 = l + 1 s 1 A 4 k 2 + 3 C 4 k 2 + 5 V 0 k 1 = 0 s A 4 k 1 + 2 C 4 k 1 + l = 0 s ( A 4 l + 2 D 4 l + B 4 l + 2 ) k 2 = l + 1 s A 4 k 2 + 2 C 4 k 2 ,
y 4 n + 1 = y 1 i = 0 n 1 V 4 s + 1 V 4 s + 3 U 4 s + 2 U 4 s + 4 = y 1 i = 0 n 1 V 1 k 1 = 0 s 1 A 4 k 1 + 3 C 4 k 1 + 1 + l = 0 s 1 ( A 4 l + 3 D 4 l + 1 + B 4 l + 3 ) k 2 = l + 1 s 1 A 4 k 2 + 3 C 4 k 2 + 1 U 2 k 1 = 0 s 1 A 4 k 1 + 2 C 4 k 1 + 4 + l = 0 s 1 ( B 4 l + 2 C 4 l + 4 + D 4 l + 4 ) k 2 = l + 1 s 1 A 4 k 2 + 2 C 4 k 2 + 4 × V 3 k 1 = 0 s 1 A 4 k 1 + 5 C 4 k 1 + 3 + l = 0 s 1 ( A 4 l + 5 D 4 l + 3 + B 4 l + 5 ) k 2 = l + 1 s 1 A 4 k 2 + 5 C 4 k 2 + 3 U 0 k 1 = 0 s A 4 k 1 C 4 k 1 + 2 + l = 0 s ( B 4 l C 4 l + 2 + D 4 l + 2 ) k 2 = l + 1 s A 4 k 2 C 4 k 2 + 2 ,
x 4 n + 2 = x 2 s = 0 n 1 U 4 s + 2 U 4 s + 4 V 4 s + 3 V 4 s + 5 = x 2 s = 0 n 1 U 2 k 1 = 0 s 1 A 4 k 1 + 2 C 4 k 1 + 4 + l = 0 s 1 ( B 4 l + 2 C 4 l + 4 + D 4 l + 4 ) k 2 = l + 1 s 1 A 4 k 2 + 2 C 4 k 2 + 4 V 3 k 1 = 0 s 1 A 4 k 1 + 5 C 4 k 1 + 3 + l = 0 s 1 ( A 4 l + 5 D 4 l + 3 + B 4 l + 5 ) k 2 = l + 1 s 1 A 4 k 2 + 5 C 4 k 2 + 3 × U 0 k 1 = 0 s A 4 k 1 C 4 k 1 + 2 + l = 0 s ( B 4 l C 4 l + 2 + D 4 l + 2 ) k 2 = l + 1 s A 4 k 2 C 4 k 2 + 2 V 1 k 1 = 0 s A 4 k 1 + 3 C 4 k 1 + 1 + l = 0 s ( A 4 l + 3 D 4 l + 1 + B 4 l + 3 ) k 2 = l + 1 s A 4 k 2 + 3 C 4 k 2 + 1 ,
y 4 n + 2 = y 2 s = 0 n 1 V 4 s + 2 V 4 s + 4 U 4 s + 3 U 4 s + 5 = y 2 s = 0 n 1 V 2 k 1 = 0 s 1 A 4 k 1 + 4 C 4 k 1 + 2 + l = 0 s 1 ( A 4 l + 4 D 4 l + 2 + B 4 l + 4 ) k 2 = l + 1 s 1 A 4 k 2 + 4 C 4 k 2 + 2 U 3 k 1 = 0 s 1 A 4 k 1 + 3 C 4 k 1 + 5 + l = 0 s 1 ( B 4 l + 3 C 4 l + 5 + D 4 l + 5 ) k 2 = l + 1 s 1 A 4 k 2 + 3 C 4 k 2 + 5 × V 0 k 1 = 0 s A 4 k 1 + 2 C 4 k 1 + l = 0 s ( A 4 l + 2 D 4 l + B 4 l + 2 ) k 2 = l + 1 s A 4 k 2 + 2 C 4 k 2 U 1 k 1 = 0 s A 4 k 1 + 1 C 4 k 1 + 3 + l = 0 s ( B 4 l + 1 C 4 l + 3 + D 4 l + 3 ) k 2 = l + 1 s A 4 k 2 + 1 C 4 k 2 + 3 ,
x 4 n + 3 = x 3 s = 0 n 1 U 4 s + 3 U 4 s + 5 V 4 s + 4 V 4 s + 6 = x 3 s = 0 n 1 U 3 k 1 = 0 s 1 A 4 k 1 + 3 C 4 k 1 + 5 + l = 0 s 1 ( B 4 l + 3 C 4 l + 5 + D 4 l + 5 ) k 2 = l + 1 s 1 A 4 k 2 + 3 C 4 k 2 + 5 V 0 k 1 = 0 s A 4 k 1 + 2 C 4 k 1 + l = 0 s ( A 4 l + 2 D 4 l + B 4 l + 2 ) k 2 = l + 1 s A 4 k 2 + 2 C 4 k 2 × U 1 k 1 = 0 s A 4 k 1 + 1 C 4 k 1 + 3 + l = 0 s ( B 4 l + 1 C 4 l + 3 + D 4 l + 3 ) k 2 = l + 1 s A 4 k 2 + 1 C 4 k 2 + 3 V 2 k 1 = 0 s A 4 k 1 + 4 C 4 k 1 + 2 + l = 0 s ( A 4 l + 4 D 4 l + 2 + B 4 l + 4 ) k 2 = l + 1 s A 4 k 2 + 4 C 4 k 2 + 2 ,
y 4 n + 3 = y 3 s = 0 n 1 V 4 s + 3 V 4 s + 5 U 4 s + 4 U 4 s + 6 = y 3 s = 0 n 1 V 3 k 1 = 0 s 1 A 4 k 1 + 5 C 4 k 1 + 3 + l = 0 s 1 ( A 4 l + 5 D 4 l + 3 + B 4 l + 5 ) k 2 = l + 1 s 1 A 4 k 2 + 5 C 4 k 2 + 3 U 0 k 1 = 0 s A 4 k 1 C 4 k 1 + 2 + l = 0 s ( B 4 l C 4 l + 2 + D 4 l + 2 ) k 2 = l + 1 s A 4 k 2 C 4 k 2 + 2 × V 1 k 1 = 0 s A 4 k 1 + 3 C 4 k 1 + 1 + l = 0 s ( A 4 l + 3 D 4 l + 1 + B 4 l + 3 ) k 2 = l + 1 s A 4 k 2 + 3 C 4 k 2 + 1 U 2 k 1 = 0 s A 4 k 1 + 2 C 4 k 1 + 4 + l = 0 s ( B 4 l + 2 C 4 l + 4 + D 4 l + 4 ) k 2 = l + 1 s A 4 k 2 + 2 C 4 k 2 + 4 .

3. Solutions of Equation (2)

From the previous section, replacing x n with x n 2 , y n with y n 2 , V n with 1 x n 1 y n 2 , U n with 1 x n 2 y n 1 and A n , B n , C n , D n with a n , b n , c n , d n , respectively, we obtain the solutions for (2) as follows:
x 4 n 2 = x 2 n x 2 n 1 s = 0 n 1 k 1 = 0 s 1 a 4 k 1 c 4 k 1 + 2 + x 2 y 1 l = 0 s 1 ( b 4 l c 4 l + 2 + d 4 l + 2 ) k 2 = l + 1 s 1 a 4 k 2 c 4 k 2 + 2 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 1 + x 0 y 1 l = 0 s 1 ( a 4 l + 3 d 4 l + 1 + b 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 1 × k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + x 0 y 1 l = 0 s 1 ( b 4 l + 2 c 4 l + 4 + d 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 + 4 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + x 2 y 1 l = 0 s 1 ( a 4 l + 5 d 4 l + 3 + b 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 5 c 4 k 2 + 3
= x 2 n x 2 n 1 s = 0 n 1 k 1 = 0 s 1 a 4 k 1 c 4 k 1 + 2 + x 2 y 1 l = 0 s 1 ( b 4 l c 4 l + 2 + d 4 l + 2 ) k 2 = l + 1 s 1 a 4 k 2 c 4 k 2 + 2 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 1 + x 0 y 1 l = 0 s 1 ( a 4 l + 3 d 4 l + 1 + b 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 1 × k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + x 1 y 2 c 0 + d 0 x 1 y 2 l = 0 s 1 ( b 4 l + 2 c 4 l + 4 + d 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 + 4 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + x 1 y 0 a 1 + b 1 x 1 y 0 l = 0 s 1 ( a 4 l + 5 d 4 l + 3 + b 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 5 c 4 k 2 + 3
= 1 x 2 n 1 s = 0 n 1 ( k 1 = 0 s 1 a 4 k 1 c 4 k 1 + 2 + x 2 y 1 l = 0 s 1 ( b 4 l c 4 l + 2 + d 4 l + 2 ) k 2 = l + 1 s 1 a 4 k 2 c 4 k 2 + 2 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 1 + x 0 y 1 l = 0 s 1 ( a 4 l + 3 d 4 l + 1 + b 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 1 × c 0 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + d 0 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + l = 0 s 1 ( b 4 l + 2 c 4 l + 4 + d 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 + 4 x 1 y 2 a 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + b 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + l = 0 s 1 ( a 4 l + 5 d 4 l + 3 + b 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 5 c 4 k 2 + 3 x 1 y 0 ) × a 1 + b 1 x 1 y 0 c 0 + d 0 x 1 y 2 n x 0 y 0 ( c 0 + d 0 x 1 y 2 ) y 2 ( a 1 + b 1 x 1 y 0 ) n = x 0 n y 0 n x 2 n 1 y 2 n s = 0 n 1 k 1 = 0 s 1 a 4 k 1 c 4 k 1 + 2 + x 2 y 1 l = 0 s 1 ( b 4 l c 4 l + 2 + d 4 l + 2 ) k 2 = l + 1 s 1 a 4 k 2 c 4 k 2 + 2 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 1 + x 0 y 1 l = 0 s 1 ( a 4 l + 3 d 4 l + 1 + b 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 1 × c 0 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + d 0 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + l = 0 s 1 ( b 4 l + 2 c 4 l + 4 + d 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 + 4 x 1 y 2 a 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + b 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + l = 0 s 1 ( a 4 l + 5 d 4 l + 3 + b 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 5 c 4 k 2 + 3 x 1 y 0 ,
y 4 n 2 = y 2 n y 2 n 1 s = 0 n 1 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + x 1 y 2 l = 0 s 1 ( a 4 l + 2 d 4 l + b 4 l + 2 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 k 1 = 0 s 1 a 4 k 1 + 1 c 4 k 1 + 3 + x 1 y 0 l = 0 s 1 ( b 4 l + 1 c 4 l + 3 + d 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 1 c 4 k 2 + 3 × k 1 = 0 s 1 a 4 k 1 + 4 c 4 k 1 + 2 + x 1 y 0 l = 0 s 1 ( a 4 l + 4 d 4 l + 2 + b 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 4 c 4 k 2 + 2 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + x 1 y 2 l = 0 s 1 ( b 4 l + 3 c 4 l + 5 + d 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 5 = y 2 n y 2 n 1 s = 0 n 1 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + x 1 y 2 l = 0 s 1 ( a 4 l + 2 d 4 l + b 4 l + 2 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 k 1 = 0 s 1 a 4 k 1 + 1 c 4 k 1 + 3 + x 1 y 0 l = 0 s 1 ( b 4 l + 1 c 4 l + 3 + d 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 1 c 4 k 2 + 3 × k 1 = 0 s 1 a 4 k 1 + 4 c 4 k 1 + 2 + x 2 y 1 a 0 + b 0 x 2 y 1 l = 0 s 1 ( a 4 l + 4 d 4 l + 2 + b 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 4 c 4 k 2 + 2 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + x 0 y 1 c 1 + d 1 x 0 y 1 l = 0 s 1 ( b 4 l + 3 c 4 l + 5 + d 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 5 = x 0 n y 0 n x 2 n y 2 n 1 s = 0 n 1 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + x 1 y 2 l = 0 s 1 ( a 4 l + 2 d 4 l + b 4 l + 2 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 k 1 = 0 s 1 a 4 k 1 + 1 c 4 k 1 + 3 + x 1 y 0 l = 0 s 1 ( b 4 l + 1 c 4 l + 3 + d 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 1 c 4 k 2 + 3 × a 0 k 1 = 0 s 1 a 4 k 1 + 4 c 4 k 1 + 2 + b 0 k 1 = 0 s 1 a 4 k 1 + 4 c 4 k 1 + 2 + l = 0 s 1 ( a 4 l + 4 d 4 l + 2 + b 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 4 c 4 k 2 + 2 x 2 y 1 c 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + d 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + l = 0 s 1 ( b 4 l + 3 c 4 l + 5 + d 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 5 x 0 y 1 .
Similarly, we obtain that
x 4 n 1 = s = 0 n 1 k 1 = 0 s 1 a 4 k 1 + 1 c 4 k 1 + 3 + x 1 y 0 l = 0 s 1 ( b 4 l + 1 c 4 l + 3 + d 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 1 c 4 k 2 + 3 a 0 k 1 = 0 s 1 a 4 k 1 + 4 c 4 k 1 + 2 + b 0 k 1 = 0 s 1 a 4 k 1 + 4 c 4 k 1 + 2 + l = 0 s 1 ( a 4 l + 4 d 4 l + 2 + b 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 4 c 4 k 2 + 2 x 2 y 1 × c 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + d 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + l = 0 s 1 ( b 4 l + 3 c 4 l + 5 + d 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 5 x 0 y 1 k 1 = 0 s a 4 k 1 + 2 c 4 k 1 + x 1 y 2 l = 0 s ( a 4 l + 2 d 4 l + b 4 l + 2 ) k 2 = l + 1 s a 4 k 2 + 2 c 4 k 2 × x 1 x 2 n y 2 n x 0 n y 0 n ,
y 4 n 1 = i = 0 n 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 1 + x 0 y 1 l = 0 s 1 ( a 4 l + 3 d 4 l + 1 + b 4 l + 3 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 1 c 0 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + d 0 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + l = 0 s 1 ( b 4 l + 2 c 4 l + 4 + d 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 + 4 x 1 y 2 × a 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + b 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + l = 0 s 1 ( a 4 l + 5 d 4 l + 3 + b 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 5 c 4 k 2 + 3 x 1 y 0 k 1 = 0 s a 4 k 1 c 4 k 1 + 2 + x 2 y 1 l = 0 s ( b 4 l c 4 l + 2 + d 4 l + 2 ) k 2 = l + 1 s a 4 k 2 c 4 k 2 + 2 × y 1 x 2 n y 2 n x 0 n y 0 n ,
x 4 n = s = 0 n 1 c 0 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + d 0 k 1 = 0 s 1 a 4 k 1 + 2 c 4 k 1 + 4 + l = 0 s 1 ( b 4 l + 2 c 4 l + 4 + d 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 2 c 4 k 2 + 4 x 1 y 2 a 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + b 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + l = 0 s 1 ( a 4 l + 5 d 4 l + 3 + b 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 5 c 4 k 2 + 3 x 1 y 0 × k 1 = 0 s a 4 k 1 c 4 k 1 + 2 + x 2 y 1 l = 0 s ( b 4 l c 4 l + 2 + d 4 l + 2 ) k 2 = l + 1 s a 4 k 2 c 4 k 2 + 2 k 1 = 0 s a 4 k 1 + 3 c 4 k 1 + 1 + x 0 y 1 l = 0 s ( a 4 l + 3 d 4 l + 1 + b 4 l + 3 ) k 2 = l + 1 s a 4 k 2 + 3 c 4 k 2 + 1 x 0 n + 1 y 0 n x 2 n y 2 n ,
y 4 n = s = 0 n 1 a 0 k 1 = 0 s 1 a 4 k 1 + 4 c 4 k 1 + 2 + b 0 k 1 = 0 s 1 a 4 k 1 + 4 c 4 k 1 + 2 + l = 0 s 1 ( a 4 l + 4 d 4 l + 2 + b 4 l + 4 ) k 2 = l + 1 s 1 a 4 k 2 + 4 c 4 k 2 + 2 x 2 y 1 c 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + d 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + l = 0 s 1 ( b 4 l + 3 c 4 l + 5 + d 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 5 x 0 y 1 × k 1 = 0 s a 4 k 1 + 2 c 4 k 1 + x 1 y 2 l = 0 s ( a 4 l + 2 d 4 l + b 4 l + 2 ) k 2 = l + 1 s a 4 k 2 + 2 c 4 k 2 k 1 = 0 s a 4 k 1 + 1 c 4 k 1 + 3 + x 1 y 0 l = 0 s ( b 4 l + 1 c 4 l + 3 + d 4 l + 3 ) k 2 = l + 1 s a 4 k 2 + 1 c 4 k 2 + 3 x 0 n y 0 n + 1 x 2 n y 2 n ,
x 4 n + 1 = s = 0 n 1 c 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + d 1 k 1 = 0 s 1 a 4 k 1 + 3 c 4 k 1 + 5 + l = 0 s 1 ( b 4 l + 3 c 4 l + 5 + d 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 3 c 4 k 2 + 5 x 0 y 1 k 1 = 0 s a 4 k 1 + 2 c 4 k 1 + x 1 y 2 l = 0 s ( a 4 l + 2 d 4 l + b 4 l + 2 ) k 2 = l + 1 s a 4 k 2 + 2 c 4 k 2 × k 1 = 0 s a 4 k 1 + 1 c 4 k 1 + 3 + x 1 y 0 l = 0 s ( b 4 l + 1 c 4 l + 3 + d 4 l + 3 ) k 2 = l + 1 s a 4 k 2 + 1 c 4 k 2 + 3 a 0 k 1 = 0 s a 4 k 1 + 4 c 4 k 1 + 2 + b 0 k 1 = 0 s a 4 k 1 + 4 c 4 k 1 + 2 + l = 0 s ( a 4 l + 4 d 4 l + 2 + b 4 l + 4 ) k 2 = l + 1 s a 4 k 2 + 4 c 4 k 2 + 2 x 2 y 1 × x 2 n + 1 y 2 n y 1 x 0 n y 0 n + 1 ( a 0 + b 0 x 2 y 1 ) ,
y 4 n + 1 = s = 0 n 1 a 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + b 1 k 1 = 0 s 1 a 4 k 1 + 5 c 4 k 1 + 3 + l = 0 s 1 ( a 4 l + 5 d 4 l + 3 + b 4 l + 5 ) k 2 = l + 1 s 1 a 4 k 2 + 5 c 4 k 2 + 3 x 1 y 0 k 1 = 0 s a 4 k 1 c 4 k 1 + 2 + x 2 y 1 l = 0 s ( b 4 l c 4 l + 2 + d 4 l + 2 ) k 2 = l + 1 s a 4 k 2 c 4 k 2 + 2 × k 1 = 0 s a 4 k 1 + 3 c 4 k 1 + 1 + x 0 y 1 l = 0 s ( a 4 l + 3 d 4 l + 1 + b 4 l + 3 ) k 2 = l + 1 s a 4 k 2 + 3 c 4 k 2 + 1 c 0 k 1 = 0 s a 4 k 1 + 2 c 4 k 1 + 4 + d 0 k 1 = 0 s a 4 k 1 + 2 c 4 k 1 + 4 + l = 0 s ( b 4 l + 2 c 4 l + 4 + d 4 l + 4 ) k 2 = l + 1 s a 4 k 2 + 2 c 4 k 2 + 4 x 1 y 2 × x 2 n y 2 n + 1 x 1 x 0 n + 1 y 0 n ( c 0 + d 0 x 1 y 2 ) .
Thus, the explicit solution { x n } n = 2 , { y n } n = 2 to (2) is given by Equations (45)–(52). In the following section, we look at special cases, where the solutions are expressed in terms of the initial values. In some of these cases, we generalize and simplify some of the results found in [18].

3.1. The Cases a n , b n c n , d n Are Constant and Explicit Solutions

Assume that a n = a , b n = b , c n = d , d n = d are constants in the equations obtained in the previous section. The solution is then given by
x 4 n 2 = x 0 n y 0 n y 2 n x 2 n 1 s = 0 n 1 ( a c ) s + ( b c + d ) x 2 y 1 l = 0 s 1 ( a c ) l ( a c ) s + ( a d + b ) x 0 y 1 l = 0 s 1 ( a c ) l ( a s c s + 1 + ( a c ) s d + ( b c + d ) l = 0 s 1 ( a c ) l y 2 x 1 ( a s + 1 c s + ( a c ) s b + ( a d + b ) l = 0 s 1 ( a c ) l x 1 y 0 ,
x 4 n 1 = x 1 x 2 n y 2 n x 0 n y 0 n s = 0 n 1 ( a c ) s + ( b c + d ) x 1 y 0 l = 0 s 1 ( a c ) l a s + 1 c s + ( a c ) s b + ( a d + b ) l = 0 s 1 ( a c ) l x 2 y 1 × a s c s + 1 + ( a c ) s d + ( b c + d ) l = 0 s 1 ( a c ) l x 0 y 1 ( a c ) s + 1 + ( a d + b ) x 1 y 2 l = 0 s ( a c ) l ,
x 4 n = x 0 n + 1 y 0 n x 2 n y 2 n s = 0 n 1 ( a s c s + 1 + ( a c ) s d + ( b c + d ) l = 0 s 1 ( a c ) l x 1 y 2 ( a s + 1 c s + ( a c ) s b + ( a d + b ) l = 0 s 1 ( a c ) l x 1 y 0 ( a c ) s + 1 + ( b c + d ) x 2 y 1 l = 0 s ( a c ) l ( a c ) s + 1 + ( a d + b ) x 0 y 1 l = 0 s ( a c ) l ,
x 4 n + 1 = x 2 n + 1 y 2 n y 1 x 0 n y 0 n + 1 ( a + b x 2 y 1 ) s = 0 n 1 a s c s + 1 + ( a c ) s d + ( b c + d ) l = 0 s 1 ( a c ) l x 0 y 1 ( a c ) s + 1 + ( a d + b ) x 1 y 2 l = 0 s ( a c ) l × ( a c ) s + 1 + ( b c + d ) x 1 y 0 l = 0 s ( a c ) l a s + 2 c s + 1 + ( a c ) s + 1 b + ( a d + b ) l = 0 s ( a c ) l x 2 y 1 ,
y 4 n 2 = x 0 n y 0 n x 2 n y 2 n 1 s = 0 n 1 ( a c ) s + ( a d + b ) x 1 y 2 l = 0 s 1 ( a c ) l ( a c ) s + ( b c + d ) x 1 y 0 l = 0 s 1 ( a c ) l a s + 1 c s + ( a c ) s b + ( a d + b ) l = 0 s 1 ( a c ) l x 2 y 1 ( a s c s + 1 + ( a c ) s d + ( b c + d ) l = 0 s 1 ( a c ) l x 0 y 1 ,
y 4 n 1 = x 2 n y 2 n y 1 x 0 n y 0 n i = 0 n 1 ( a c ) s + ( a d + b ) x 0 y 1 l = 0 s 1 ( a c ) l a s c s + 1 + ( a c ) s d + ( b c + d ) l = 0 s 1 ( a c ) l x 1 y 2 × a s + 1 c s + ( a c ) s b + ( a d + b ) l = 0 s 1 ( a c ) l x 1 y 0 ( a c ) s + 1 + ( b c + d ) x 2 y 1 l = 0 s ( a c ) l ,
y 4 n = x 0 n y 0 n + 1 x 2 n y 2 n s = 0 n 1 ( a s + 1 c s + ( a c ) s b + ( a d + b ) l = 0 s 1 ( a c ) l x 2 y 1 k 1 = 0 s 1 a s c s + 1 + ( a c ) s d + ( b c + d ) l = 0 s 1 ( a c ) l x 0 y 1 ( a c ) s + 1 + ( a d + b ) x 1 y 2 l = 0 s ( a c ) l ( a c ) s + 1 + ( b c + d ) x 1 y 0 l = 0 s ( a c ) l ,
y 4 n + 1 = x 1 x 2 n y 2 n + 1 x 0 n + 1 y 0 n ( c + d x 1 y 2 ) s = 0 n 1 a s + 1 c s + ( a c ) s b + ( a d + b ) l = 0 s 1 ( a c ) l x 1 y 0 ( a c ) s + 1 + ( b c + d ) x 2 y 1 l = 0 s ( a c ) l × ( a c ) s + 1 + ( a d + b ) x 0 y 1 l = 0 s ( a c ) l a s + 1 c s + 2 + ( a c ) s + 1 d + ( b c + d ) l = 0 s ( a c ) l x 1 y 2 .

3.1.1. The Case a = b = c = d = 1

The solution of the system, which is Theorem 1 of Elsayed [18], is:
x 4 n 2 = x 0 n y 0 n y 2 n x 2 n 1 s = 0 n 1 1 + 2 s x 2 y 1 1 + 2 s x 0 y 1 1 + ( 1 + 2 s ) y 2 x 1 1 + ( 1 + 2 s ) x 1 y 0 ,
x 4 n 1 = x 1 x 2 n y 2 n x 0 n y 0 n s = 0 n 1 1 + 2 s x 1 y 0 1 + ( 1 + 2 s ) x 2 y 1 1 + ( 1 + 2 s ) x 0 y 1 1 + ( 2 s + 2 ) x 1 y 2 ,
x 4 n = x 0 n + 1 y 0 n x 2 n y 2 n s = 0 n 1 1 + ( 1 + 2 s ) x 1 y 2 1 + ( 1 + 2 s ) x 1 y 0 1 + ( 2 s + 2 ) x 2 y 1 1 + ( 2 s + 2 ) x 0 y 1 ,
x 4 n + 1 = x 2 n + 1 y 2 n y 1 x 0 n y 0 n + 1 ( 1 + x 2 y 1 ) s = 0 n 1 1 + ( 1 + 2 s ) x 0 y 1 1 + ( 2 s + 2 ) x 1 y 2 1 + ( 2 s + 2 ) x 1 y 0 1 + ( 2 s + 3 ) x 2 y 1 ,
y 4 n 2 = x 0 n y 0 n x 2 n y 2 n 1 s = 0 n 1 1 + 2 s x 1 y 2 1 + 2 s x 1 y 0 1 + ( 1 + 2 s ) x 2 y 1 1 + ( 1 + 2 s ) x 0 y 1 ,
y 4 n 1 = x 2 n y 2 n y 1 x 0 n y 0 n i = 0 n 1 1 + 2 s x 0 y 1 1 + ( 1 + 2 s ) x 1 y 2 1 + ( 1 + 2 s ) x 1 y 0 1 + ( 2 s + 2 ) x 2 y 1 ,
y 4 n = x 0 n y 0 n + 1 x 2 n y 2 n s = 0 n 1 1 + ( 1 + 2 s ) x 2 y 1 1 + ( 1 + 2 s ) x 0 y 1 1 + ( 2 s + 2 ) x 1 y 2 1 + ( 2 s + 2 ) x 1 y 0 ,
y 4 n + 1 = x 1 x 2 n y 2 n + 1 x 0 n + 1 y 0 n ( 1 + x 1 y 2 ) s = 0 n 1 1 + ( 1 + 2 s ) x 1 y 0 1 + ( 2 s + 2 ) x 2 y 1 1 + ( 2 s + 2 ) x 0 y 1 1 + ( 2 s + 3 ) x 1 y 2 .

3.1.2. The Case a = c = 1 , b = d = 1

In this case, we obtain Theorem 2 of Elsayed [18] as follows:
x 4 n 2 = x 0 n y 0 n y 2 n x 2 n 1 s = 0 n 1 1 2 s x 2 y 1 1 2 s x 0 y 1 1 ( 1 + 2 s ) y 2 x 1 1 ( 1 + 2 s ) x 1 y 0 ,
x 4 n 1 = x 1 x 2 n y 2 n x 0 n y 0 n s = 0 n 1 1 2 s x 1 y 0 1 ( 1 + 2 s ) x 2 y 1 1 ( 1 + 2 s ) x 0 y 1 1 ( 2 s + 2 ) x 1 y 2 ,
x 4 n = x 0 n + 1 y 0 n x 2 n y 2 n s = 0 n 1 1 ( 1 + 2 s ) x 1 y 2 1 ( 1 + 2 s ) x 1 y 0 1 ( 2 s + 2 ) x 2 y 1 1 ( 2 s + 2 ) x 0 y 1 ,
x 4 n + 1 = x 2 n + 1 y 2 n y 1 x 0 n y 0 n + 1 ( 1 x 2 y 1 ) s = 0 n 1 1 ( 1 + 2 s ) x 0 y 1 1 ( 2 s + 2 ) x 1 y 2 1 ( 2 s + 2 ) x 1 y 0 1 ( 2 s + 3 ) x 2 y 1 ,
y 4 n 2 = x 0 n y 0 n x 2 n y 2 n 1 s = 0 n 1 1 2 s x 1 y 2 1 2 s x 1 y 0 1 ( 1 + 2 s ) x 2 y 1 1 ( 1 + 2 s ) x 0 y 1 ,
y 4 n 1 = x 2 n y 2 n y 1 x 0 n y 0 n i = 0 n 1 1 2 s x 0 y 1 1 ( 1 + 2 s ) x 1 y 2 1 ( 1 + 2 s ) x 1 y 0 1 ( 2 s + 2 ) x 2 y 1 ,
y 4 n = x 0 n y 0 n + 1 x 2 n y 2 n s = 0 n 1 1 ( 1 + 2 s ) x 2 y 1 1 ( 1 + 2 s ) x 0 y 1 1 ( 2 s + 2 ) x 1 y 2 1 ( 2 s + 2 ) x 1 y 0 ,
y 4 n + 1 = x 1 x 2 n y 2 n + 1 x 0 n + 1 y 0 n ( 1 x 1 y 2 ) s = 0 n 1 1 ( 1 + 2 s ) x 1 y 0 1 ( 2 s + 2 ) x 2 y 1 1 ( 2 s + 2 ) x 0 y 1 1 ( 2 s + 3 ) x 1 y 2 .

3.1.3. Some Cases Where the Constants Are Unit

Substituting the following values, we obtain the solution that Elsayed [18] obtained:
a = c = d = 1 , b = 1 (Theorem 3 in [18]);
a = b = c = 1 , d = 1 (Theorem 4 in [18]);
a = b = c = 1 , d = 1 (Theorem 13 in [18]);
a = c = d = 1 , b = 1 (Theorem 14 in [18]);
a = c = 1 , b = d = 1 (Theorem 15 in [18]);
a = b = c = d = 1 (Theorem 16 in [18]).

3.1.4. Remaining Cases Where the Constants Are Unit

For each of the following cases:
b = c = d = 1 , a = 1 ;
a = b = d = 1 , c = 1 ;
a = b = 1 , c = d = 1 ;
a = d = 1 , b = c = 1 ;
a = b = d = 1 , c = 1 ;
a = b = 1 , c = d = 1 ;
b = c = d = 1 , a = 1 ;
a = d = 1 , b = c = 1 ;
our solution is represented by 8 equations, whereas in Elsayed’s case [18] (see Theorems 5–12), the solution is represented by 16 equations. Thus, ours is a great simplification of Elsayed’s solution.

3.2. The Case When a n , b n , c n , d n Are Sequences of Period 4

In this setting, the solution is given by:
x 4 n 2 = x 0 n y 0 n x 2 n 1 y 2 n s = 0 n 1 ( a 0 c 2 ) s + ( b 0 c 2 + d 2 ) x 2 y 1 l = 0 s 1 ( a 0 c 2 ) l ( a 3 c 1 ) s + ( a 3 d 1 + b 3 ) x 0 y 1 l = 0 s 1 ( a 3 c 1 ) l × c 0 ( a 2 c 0 ) s + d 0 ( a 2 c 0 ) s + ( b 2 c 0 + d 0 ) l = 0 s 1 ( a 2 c 0 ) l x 1 y 2 a 1 ( a 1 c 3 ) s + b 1 ( a 1 c 3 ) s + ( a 1 d 3 + b 1 ) l = 0 s 1 ( a 1 c 3 ) l x 1 y 0 ,
y 4 n 2 = x 0 n y 0 n x 2 n y 2 n 1 s = 0 n 1 ( a 2 c 0 ) s + ( a 2 d 0 + b 2 ) x 1 y 2 l = 0 s 1 ( a 2 c 0 ) l ( a 1 c 3 ) s + ( b 1 c 3 + d 3 ) x 1 y 0 l = 0 s 1 ( a 1 c 3 ) l × a 0 ( a 0 c 2 ) l + b 0 ( a 0 c 2 ) s + ( a 0 d 2 + b 0 ) l = 0 s 1 ( a 0 c 2 ) l x 2 y 1 c 1 ( a 3 c 1 ) s + d 1 ( a 3 c 1 ) s + ( b 3 c 1 + d 1 ) l = 0 s 1 ( a 3 c 1 ) l x 0 y 1 ,
x 4 n 1 = x 1 x 2 n y 2 n x 0 n y 0 n s = 0 n 1 k 1 = 0 s 1 a 1 c 3 + x 1 y 0 l = 0 s 1 ( b 1 c 3 + d 3 ) k 2 = l + 1 s 1 a 1 c 3 a 0 k 1 = 0 s 1 a 0 c 2 + b 0 k 1 = 0 s 1 a 0 c 2 + l = 0 s 1 ( a 0 d 2 + b 0 ) k 2 = l + 1 s 1 a 0 c 2 x 2 y 1 × c 1 ( a 3 c 1 ) s + d 1 ( a 3 c 1 ) s + ( b 3 c 1 + d 1 ) l = 0 s 1 ( a 3 c 1 ) l x 0 y 1 ( a 2 c 0 ) s + 1 + ( a 2 d 0 + b 2 ) x 1 y 2 l = 0 s ( a 2 c 0 ) l ,
y 4 n 1 = y 1 x 2 n y 2 n x 0 n y 0 n i = 0 n 1 ( a 3 c 1 ) s + ( a 3 d 1 + b 3 ) x 0 y 1 l = 0 s 1 ( a 3 c 1 ) l c 0 ( a 2 c 0 ) s + d 0 ( a 2 c 0 ) s + ( b 2 c 0 + d 0 ) l = 0 s 1 ( a 2 c 0 ) l x 1 y 2 × a 1 ( a 1 c 3 ) s + b 1 ( a 1 c 3 ) s + ( a 1 d 3 + b 1 ) l = 0 s 1 ( a 1 c 3 ) l x 1 y 0 ( a 0 c 2 ) s + 1 + ( b 4 l c 2 + d 2 ) x 2 y 1 l = 0 s ( a 0 c 2 ) l ,
x 4 n = x 0 n + 1 y 0 n x 2 n y 2 n s = 0 n 1 c 0 ( a 2 c 0 ) s + d 0 ( a 2 c 0 ) s + ( b 2 c 0 + d 0 ) l = 0 s 1 ( a 2 c 0 ) l x 1 y 2 a 1 ( a 1 c 3 ) s + b 1 ( a 1 c 3 ) s + ( a 1 d 3 + b 1 ) l = 0 s 1 ( a 1 c 3 ) l x 1 y 0 × ( a 0 c 2 ) s + 1 + ( b 0 c 2 + d 2 ) x 2 y 1 l = 0 s ( a 0 c 2 ) l ( a 3 c 1 ) s + 1 + ( a 3 d 1 + b 3 ) x 0 y 1 l = 0 s ( a 3 c 1 ) l ,
y 4 n = x 0 n y 0 n + 1 x 2 n y 2 n s = 0 n 1 a 0 ( a 0 c 2 ) s + b 0 ( a 0 c 2 ) s + ( a 0 d 2 + b 0 ) l = 0 s 1 ( a 0 c 2 ) l x 2 y 1 c 1 ( a 3 c 1 ) s + d 1 ( a 3 c 1 ) s + ( b 3 c 1 + d 1 ) l = 0 s 1 ( a 3 c 1 ) l x 0 y 1 × ( a 2 c 0 ) s + 1 + ( a 2 d 0 + b 2 ) x 1 y 2 l = 0 s ( a 2 c 0 ) l ( a 1 c 3 ) s + 1 + ( b 1 c 3 + d 3 ) x 1 y 0 l = 0 s ( a 1 c 3 ) l ,
x 4 n + 1 = x 2 n + 1 y 2 n y 1 x 0 n y 0 n + 1 ( a 0 + b 0 x 2 y 1 ) s = 0 n 1 c 1 ( a 3 c 1 ) s + d 1 ( a 3 c 1 ) s + ( b 3 c 1 + d 1 ) l = 0 s 1 ( a 3 c 1 ) l x 0 y 1 ( a 2 c 0 ) s + 1 + ( a 2 d 4 l + b 2 ) x 1 y 2 l = 0 s ( a 2 c 0 ) l × ( a 1 c 3 ) s + 1 + ( b 1 c 3 + d 3 ) x 1 y 0 l = 0 s ( a 1 c 3 ) l a 0 ( a 0 c 2 ) s + 1 + b 0 ( a 0 c 2 ) s + 1 + ( a 0 d 2 + b 0 ) l = 0 s ( a 0 c 2 ) l x 2 y 1 ,
y 4 n + 1 = x 2 n y 2 n + 1 x 1 x 0 n + 1 y 0 n ( c 0 + d 0 x 1 y 2 ) s = 0 n 1 a 1 ( a 1 c 3 ) s + b 1 ( a 1 c 3 ) s + ( a 1 d 3 + b 1 ) l = 0 s 1 ( a 1 c 3 ) l x 1 y 0 ( a 0 c 2 ) s + 1 + ( b 0 c 2 + d 2 ) x 2 y 1 l = 0 s ( a 0 c 2 ) l × ( a 3 c 1 ) s + 1 + ( a 3 d 1 + b 3 ) x 0 y 1 l = 0 s ( a 3 c 1 ) l c 0 ( a 2 c 0 ) s + 1 + d 0 ( a 2 c 0 ) s + 1 + ( b 2 c 0 + d 0 ) l = 0 s ( a 2 c 0 ) l x 1 y 2 .

4. Existence of Two-Periodic and Four-Periodic Solutions

Theorem 1.
If x 2 = x 0 , y 2 = y 0 , a = c , b = d and x 1 y 2 = x 2 y 1 = 1 a b , then the solution of the system x n + 1 = x n 2 y n 1 y n ( a + b x n 2 y n 1 ) , y n + 1 = y n 2 x n 1 x n ( c + d y n 2 x n 1 ) is periodic with period two.
Proof. 
Under the assumptions b = d , a = c , it is clear that
x 4 n 2 = x 0 n y 0 n y 2 n x 2 n 1 s = 0 n 1 ( a c ) s + ( b c + d ) x 2 y 1 l = 0 s 1 ( a c ) l ( a c ) s + ( a d + b ) x 0 y 1 l = 0 s 1 ( a c ) l ( a s c s + 1 + ( a c ) s d + ( b c + d ) l = 0 s 1 ( a c ) l y 2 x 1 ( a s + 1 c s + ( a c ) s b + ( a d + b ) l = 0 s 1 ( a c ) l x 1 y 0 , = x 2 ,
x 4 n 1 = x 1 x 2 n y 2 n x 0 n y 0 n s = 0 n 1 a 2 s + ( b a + b ) x 1 y 0 l = 0 s 1 a 2 l a 2 s + 1 + a 2 s b + ( a b + b ) l = 0 s 1 a 2 l x 2 y 1 a 2 s + 1 + a 2 s b + ( b a + b ) l = 0 s 1 a 2 l x 0 y 1 a 2 s + 2 + ( a b + b ) x 1 y 2 l = 0 s a 2 l , = x 1 s = 0 n 1 a 2 s + ( b a + b ) x 1 y 2 l = 0 s 1 a 2 l a 2 s + 2 + ( a b + b ) x 1 y 2 l = 0 s 1 a 2 l + ( a b + b ) x 1 y 2 a 2 s .
However, x 1 y 2 = 1 a b implies a 2 + ( a b + b ) x 1 y 2 = 1 so that a 2 s + 2 + ( a b + b ) x 1 y 2 a 2 s = a 2 s . This yields
x 4 n 1 = x 1 .
x 4 n = x 0 n + 1 y 0 n x 2 n y 2 n s = 0 n 1 a 2 s + 1 + a 2 s b + ( b a + b ) l = 0 s 1 a 2 l x 1 y 2 a 2 s + 1 + a 2 s b + ( a b + b ) l = 0 s 1 a 2 l x 1 y 0 a 2 s + 2 + ( b a + b ) x 2 y 1 l = 0 s a 2 l a 2 s + 2 + ( a b + b ) x 0 y 1 l = 0 s a 2 l = x 0
x 4 n + 1 = x 2 n + 1 y 2 n y 1 x 0 n y 0 n + 1 ( a + b x 2 y 1 ) s = 0 n 1 a 2 s + 1 + a 2 s b + ( b a + b ) l = 0 s 1 a 2 l x 0 y 1 a 2 s + 2 + ( a b + b ) x 1 y 2 l = 0 s a 2 l × a 2 s + 2 + ( b a + b ) x 1 y 0 l = 0 s a 2 l a 2 s + 3 + a 2 s + 2 b + ( a b + b ) l = 0 s a 2 l x 2 y 1 , = x 0 y 1 y 0 ( a + b x 2 y 1 ) s = 0 n 1 a 2 s + 1 + a 2 s b + ( b a + b ) l = 0 s 1 a 2 l x 0 y 1 a 2 s + 3 + a 2 s + 2 b + ( a b + b ) l = 0 s a 2 l x 2 y 1 = x 1 s = 0 n 1 a 2 s + 1 + a 2 s b + ( b a + b ) l = 0 s 1 a 2 l x 0 y 1 a 2 s + 3 + a 2 s + 2 b + ( a b + b ) l = 0 s a 2 l x 2 y 1 .
However, x 2 x 1 = 1 a b implies that a + b x 0 x 1 = a 3 + a 2 b x 2 y 1 + ( a b + b ) x 2 y 1 , which in turn yields a 2 s + 1 + a 2 s + 2 b x 0 x 1 = a 2 s + 3 + a 2 s + 2 b x 2 y 1 + ( a b + b ) a 2 s x 2 y 1 . Thus,
x 4 n + 1 = x 1 .
Similarly, it is not difficult to show that y 4 n + j = y j for all n 0 and j 2 . Because x 2 = x 0 and y 2 = y 0 , we must have x 2 + j = x j and y 2 + j = for all j 2 . Thus, the solution has period 2. □
For illustration, we give numerical examples (see Figure 1 and Figure 2).
Theorem 2.
If x 0 = x 2 , y 0 = y 2 , a = c , b = d and x 1 y 2 = x 2 y 1 = 1 + a b , then the solution of the system x n + 1 = x n 2 y n 1 y n ( a + b x n 2 y n 1 ) , y n + 1 = y n 2 x n 1 x n ( c + d y n 2 x n 1 ) is periodic with period four.
Proof. 
Under the given assumptions x 0 = x 2 , y 0 = y 2 , a = c , b = d , we have
x 4 n 2 = x 0 n y 0 n y 2 n x 2 n 1 s = 0 n 1 a 2 s + ( a b b ) x 2 y 1 l = 0 s 1 a 2 l a 2 s + ( a b b ) x 2 y 1 l = 0 s 1 a 2 l a 2 s + 1 + a 2 s b + ( a b b ) l = 0 s 1 a 2 l y 2 x 1 a 2 s + 1 + a 2 s b + ( a b + b ) l = 0 s 1 ( a c ) l x 1 y 0 = x 0 n y 0 n y 2 n x 2 n 1 s = 0 n 1 a 2 s + 1 + a 2 s b + ( a b b ) l = 0 s 1 a 2 l ( y 0 ) x 1 a 2 s + 1 + a 2 s b + ( a b + b ) l = 0 s 1 ( a c ) l x 1 y 0 = x 2 ,
x 4 n 1 = x 1 x 2 n y 2 n x 0 n y 0 n s = 0 n 1 ( a ) 2 s + ( a b b ) x 1 y 0 l = 0 s 1 ( a c ) l a 2 s + 1 + ( a ) 2 s b + ( a b + b ) l = 0 s 1 ( a ) 2 l x 2 y 1 × a 2 s + 1 + ( a ) 2 s b + ( a b b ) l = 0 s 1 ( a ) 2 l x 0 y 1 ( a ) 2 s + 2 + ( a b + b ) x 1 y 2 l = 0 s ( a ) 2 l = x 1 x 2 n y 2 n x 0 n y 0 n s = 0 n 1 ( a ) 2 s + ( a b b ) x 1 y 0 l = 0 s 1 ( a c ) l ( a ) 2 s + 2 + ( a b b ) x 1 y 0 l = 0 s ( a ) 2 l .
However, x 1 y 2 = 1 + a b , i.e., x 1 y 0 = ( 1 + a ) ( 1 a ) b ( 1 a ) implies that ( a 1 ) b x 1 y 0 = ( 1 a ) ( 1 + a ) , i.e., a 2 + ( a b b ) x 1 y 0 = 1 implying
a 2 s + 2 + ( a b b ) x 1 y 0 a 2 s = a 2 s
so that
x 4 n 1 = x 1 .
x 4 n = x 0 n + 1 y 0 n x 2 n y 2 n s = 0 n 1 a 2 s + 1 + a 2 s b + ( a b b ) l = 0 s 1 a 2 l x 1 ( y 0 ) a 2 s + 1 + a 2 s b + ( a b + b ) l = 0 s 1 a 2 l x 1 y 0 ( a ) 2 s + 2 + ( a b b ) x 2 y 1 l = 0 s a 2 l a 2 s + 2 + ( a b + b ) x 0 y 1 l = 0 s a 2 l = x 0 ,
x 4 n + 1 = x 2 n + 1 y 2 n y 1 x 0 n y 0 n + 1 ( a + b x 2 y 1 ) s = 0 n 1 a 2 s + 1 + ( a ) 2 s b + ( a b b ) l = 0 s 1 ( a ) 2 l x 0 y 1 ( a ) 2 s + 2 + ( a b + b ) x 1 y 2 l = 0 s ( a ) 2 l × ( a ) 2 s + 2 + ( a b b ) x 1 y 0 l = 0 s ( a ) 2 l a 2 s + 3 + ( a ) 2 s + 2 b + ( a b + b ) l = 0 s ( a ) 2 l x 2 y 1 = x 2 n + 1 y 2 n y 1 x 0 n y 0 n + 1 ( a + b x 2 y 1 ) s = 0 n 1 a 2 s + 1 + ( a ) 2 s b + ( a b + b ) l = 0 s 1 ( a ) 2 l x 2 y 1 a 2 s + 3 + ( a ) 2 s + 2 b + ( a b + b ) l = 0 s ( a ) 2 l x 2 y 1 .
However, x 2 y 1 = 1 + a b implies that a 3 + ( a 2 b a b + b ) x 2 y 1 = a + b x 2 y 1 which yields
a 2 s + 3 + ( a 2 s + 2 b + ( a b + b ) a 2 s ) x 2 y 1 = a 2 s + 1 + a 2 s b x 2 y 1
so that
x 4 n + 1 = x 1 .
Similarly, one can show that y 4 n + j = y j for all n 0 and j 2 . Indeed, the solution under the given assumptions is periodic with period four. □
For illustration, we give numerical examples (see Figure 3 and Figure 4).
Remark 1.
If x 0 = x 2 , y 0 = y 2 , a = c = 1 , d = 1 , then the solution of the system x n + 1 = x n 2 y n 1 y n ( a + b x n 2 y n 1 ) , y n + 1 = y n 2 x n 1 x n ( c + d y n 2 x n 1 ) is periodic with period four. The condition x 1 y 2 = 1 + a b is not needed. This is clearly seen from the form of the solution where one replaces a b b = 0 . This is the case of Theorem 18 of Elsayed [18].

5. Conclusions

We derived the Lie point symmetries of the difference equation (3). The higher-order equations were reduced to lower-order equations, and via iterations, we were able to obtain the solutions of the system of difference equations (2) in an explicit form. The results found in this paper not only generalize the solutions found by Elsayed and Ibrahim in [18] but also greatly simplify the solutions in Theorems 5–12 in the same paper by using only 8 equations instead of 16 equations. It remains an open problem to determine whether or not there are other sufficient conditions for the periodicities in Theorems 1 and 2.

Author Contributions

Both authors contribute equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Research Funding (NRF) of South Africa, grant number: 132108.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Almatrafi, M.B.; Elsayed, E.M.; Alzahrani, F. The Solution and Dynamic Behavior of Some Difference Equations of Fourth Order. Discret. Impuls. Syst. Ser. Math. Anal. 2022, 29, 33–50. [Google Scholar]
  2. Almatrafi, M.B. Exact solutions and stability of sixth order difference equations. Electron. J. Math. Anal. Appl. 2022, 10, 209–225. [Google Scholar]
  3. Almatrafi, M.B.; Alzubaidis, M. The solution and dynamic behaviour of some difference equations of seventh order. J. Appl. Nonlinear Dyn. 2021, 10, 709–719. [Google Scholar] [CrossRef]
  4. Almatrafi, M.B.; Alzubaidi, M. Stability analysis for a rational difference equation. Arab. J. Basic Appl. Sci. 2020, 27, 114–120. [Google Scholar] [CrossRef] [Green Version]
  5. Almatrafi, M.B. Analysis of Solutions of Some Discrete Systems of Rational Difference Equations. J. Comput. Anal. Appl. 2021, 29, 355–368. [Google Scholar]
  6. Almatrafi, M.B.; Alzubaidi, M. Periodic solutions and stability of eight order rational difference equations. J. Math. Comput. Sci. 2022, 26, 405–417. [Google Scholar] [CrossRef]
  7. Maeda, S. The similarity method for difference equations. IMA J. Appl. Math. 1987, 38, 129–134. [Google Scholar] [CrossRef]
  8. Ibrahim, T.F.; Khan, A.Q. Forms of solutions for some two-dimensional systems of rational Partial Recursion Equations. Math. Probl. Eng. 2021, 2021, 9966197. [Google Scholar] [CrossRef]
  9. Ibrahim, T.K. Behavior of Two and Three-Dimensional Systems of Difference Equations in Modelling Competitive Populations. Dyn. Contin. Discret. Impuls. Syst. Ser. 2017, 24, 395–418. [Google Scholar]
  10. Folly-Gbetoula, M.; Nyirenda, D. Lie Symmetry Analysis and Explicit Formulas for Solutions of some Third-order Difference Equations. Quaest. Math. 2019, 42, 907–917. [Google Scholar] [CrossRef]
  11. Folly-Gbetoula, M.; Nyirenda, D. On some sixth-order rational recursive sequences. J. Comput. Anal. Appl. 2019, 27, 1057–1069. [Google Scholar]
  12. Hydon, P.E. Difference Equations by Differential Equation Methods; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
  13. Mnguni, N.; Folly-Gbetoula, M. Invariance analysis of a third-order difference equation with variable coefficients. Dyn. Contin. Discret. Impuls. Syst. Appl. Algorithms 2018, 25, 63–73. [Google Scholar]
  14. Levi, D.; Vinet, L.; Winternitz, P. Lie group formalism for difference equations. J. Phys. A Math. Gen. 1997, 30, 633–649. [Google Scholar] [CrossRef]
  15. Folly-Gbetoula, M.; Kara, A.H. Symmetries, conservation laws, and ‘integrability’ of difference equations. Adv. Differ. Equ. 2014, 2014, 224. [Google Scholar] [CrossRef] [Green Version]
  16. Akbulut, A.; Mirzazadeh, M.; Hashemi, M.S.; Hosseini, K.; Salahshour, S.; Park, C. Triki–Biswas model: Its symmetry reduction, Nucci’s reduction and conservation laws. Int. J. Mod. Phys B 2022, 2022, 2350063. [Google Scholar] [CrossRef]
  17. Chu, Y.M.; Inc, M.; Hashemi, M.S.; Eshaghi, S. Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 2022, 41, 271. [Google Scholar] [CrossRef]
  18. Elsayed, E.M.; Ibrahim, T.F. Periodicity and solutions for some systems of nonlinear rational difference equations. Hacet. J. Math. Stat. 2015, 44, 1361–1390. [Google Scholar] [CrossRef]
  19. Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
  20. Joshi, N.; Vassiliou, P. The existence of Lie Symmetries for First-Order Analytic Discrete Dynamical Systems. J. Math. Anal. Appl. 1995, 195, 872–887. [Google Scholar] [CrossRef]
Figure 1. a = c = 0.5 , b = d = 0.7 , x 2 = x 0 = 1 / 7 , x 1 = 25 / 14 , y 2 = y 0 = 0.4 , y 1 = 5 .
Figure 1. a = c = 0.5 , b = d = 0.7 , x 2 = x 0 = 1 / 7 , x 1 = 25 / 14 , y 2 = y 0 = 0.4 , y 1 = 5 .
Symmetry 14 02683 g001
Figure 2. a = c = 2.0 , b = d = 6.0 , x 2 = x 0 = 1.0 , x 1 = 0.5 , y 2 = y 0 = 1 / 3 , y 1 = 1 / 6 .
Figure 2. a = c = 2.0 , b = d = 6.0 , x 2 = x 0 = 1.0 , x 1 = 0.5 , y 2 = y 0 = 1 / 3 , y 1 = 1 / 6 .
Symmetry 14 02683 g002
Figure 3. a = c = 1 / 7 , b = d = 1 / 7 , x 2 = 1 , x 1 = 4 , x 0 = 1 , y 2 = 2 , y 1 = 8 , y 0 = 2 .
Figure 3. a = c = 1 / 7 , b = d = 1 / 7 , x 2 = 1 , x 1 = 4 , x 0 = 1 , y 2 = 2 , y 1 = 8 , y 0 = 2 .
Symmetry 14 02683 g003
Figure 4. a = c = 0.25 , b = d = 0.75 , x 2 = x 0 = 0.5 , x 1 = 3 , y 2 = y 0 = 1 / 3 , y 1 = 2 .
Figure 4. a = c = 0.25 , b = d = 0.75 , x 2 = x 0 = 0.5 , x 1 = 3 , y 2 = y 0 = 1 / 3 , y 1 = 2 .
Symmetry 14 02683 g004
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Folly-Gbetoula, M.; Nyirenda, D. A Simplification and Generalization of Elsayed and Ibrahim’s Two-Dimensional System of Third-Order Difference Equations. Symmetry 2022, 14, 2683. https://doi.org/10.3390/sym14122683

AMA Style

Folly-Gbetoula M, Nyirenda D. A Simplification and Generalization of Elsayed and Ibrahim’s Two-Dimensional System of Third-Order Difference Equations. Symmetry. 2022; 14(12):2683. https://doi.org/10.3390/sym14122683

Chicago/Turabian Style

Folly-Gbetoula, Mensah, and Darlison Nyirenda. 2022. "A Simplification and Generalization of Elsayed and Ibrahim’s Two-Dimensional System of Third-Order Difference Equations" Symmetry 14, no. 12: 2683. https://doi.org/10.3390/sym14122683

APA Style

Folly-Gbetoula, M., & Nyirenda, D. (2022). A Simplification and Generalization of Elsayed and Ibrahim’s Two-Dimensional System of Third-Order Difference Equations. Symmetry, 14(12), 2683. https://doi.org/10.3390/sym14122683

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop