Next Article in Journal
Quasi-Analytical Solution of Optimum and Maximum Depth of Transverse V-Groove for Drag Reduction at Different Reynolds Numbers
Next Article in Special Issue
Hermite–Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions
Previous Article in Journal
Interface Asymmetry Induced and Surface Pressure Controlled Valence Tautomerism in Monolayers of bis-Phthalocyaninates of Lanthanides
Previous Article in Special Issue
Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities

by
Muhammad Bilal Khan
1,
Hatim Ghazi Zaini
2,
Savin Treanțǎ
3,*,
Gustavo Santos-García
4,*,
Jorge E. Macías-Díaz
5,6 and
Mohamed S. Soliman
7
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
4
Facultad de Economía y Empresa and Multidisciplinary Institute of Enterprise (IME), University of Salamanca, 37007 Salamanca, Spain
5
Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico
6
Department of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, Estonia
7
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(2), 341; https://doi.org/10.3390/sym14020341
Submission received: 19 January 2022 / Revised: 27 January 2022 / Accepted: 4 February 2022 / Published: 7 February 2022
(This article belongs to the Special Issue Symmetry in Mathematical Analysis and Functional Analysis)

Abstract

:
In this paper, we discuss the Riemann–Liouville fractional integral operator for left and right convex interval-valued functions (left and right convex I∙V-F), as well as various related notions and concepts. First, the authors used the Riemann–Liouville fractional integral to prove Hermite–Hadamard type (𝓗–𝓗 type) inequality. Furthermore, 𝓗–𝓗 type inequalities for the product of two left and right convex I∙V-Fs have been established. Finally, for left and right convex I∙V-Fs, we found the Riemann–Liouville fractional integral Hermite–Hadamard type inequality (𝓗–𝓗 Fejér type inequality). The findings of this research show that this methodology may be applied directly and is computationally simple and precise.

1. Introduction

Mathematical inequality, finance, engineering, statistics, and probability all use convex functions in some way. Convex and symmetric convex functions have strong relationships with inequalities. Because of their intriguing features in the mathematical sciences, there are expansive properties and strong links between the symmetric function and different fields of convexity, including convex functions, probability theory, and convex geometry on convex sets. Convex functions have a long and illustrious history in science, and they have been a hot focus of study for more than a century. Several researchers have proposed different convex function guesses, expansions, and variants. Many inequalities or equalities, such as the Ostrowski-type inequality, Hardy-type inequality, Opial-type inequality, Simpson inequality, Fejér-type inequality, and Cebysev-type inequalities, have been established using convex functions. Among these inequalities, the 𝓗–𝓗 inequality [1,2], on which many publications have been published, is likely the one that attracts the most attention from scholars. 𝓗–𝓗 inequality has been regarded as the most useful inequality in mathematical analysis since its discovery in 1883. It is also known as the conventional 𝓗–𝓗 Inequality equation. The expansions and generalizations of the 𝓗–𝓗 inequality have piqued the curiosity of a number of mathematicians. For various classes of convex functions and mappings, a number of mathematicians in the fields of pure and applied mathematics have worked to expand, generalize, counterpart, and enhance the 𝓗–𝓗 inequality (references [3,4,5,6,7,8,9,10,11,12,13] are a good place to start for interested readers).
Historically, Leibnitz and L’Hospital (1695) are credited with the invention of fractional calculus; however, Riemann, Liouville, and Grunwald–Letnikov, among others, made significant contributions to the field later on. The way that fractional operator speculation deciphers nature’s existence in a grand and intentional fashion [14,15,16,17,18,19] has piqued the curiosity of researchers. By offering an enhanced form of an integral representation for the Appell k-series, Mubeen and Iqbal [20] have contributed to the present research.
Moreover, Khan et al. [21] exploited fuzzy order relations to introduce a new class of convex fuzzy-interval-valued functions (convex F-I∙V-Fs), known as ( h 1 , h 2 )-convex F-I∙V-Fs, as well as a novel version of the 𝓗–𝓗 type inequality for ( h 1 , h 2 )-convex F-I∙V-Fs that incorporates the fuzzy interval Riemann integral. Khan et al. went a step further by providing new convex and extended convex I∙V-F classes, as well as new fractional 𝓗–𝓗 type and 𝓗–𝓗 type inequalities for left and right ( h 1 , h 2 )-preinvex I∙V-F [22], left and right p-convex I∙V-Fs [23], left and right log-h-convex I∙V-Fs [24], and the references therein. For further analysis of the literature on the applications and properties of fuzzy Riemannian integrals, inequalities, and generalized convex fuzzy mappings, we refer the readers to cited works [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] and the references therein.
Motivated and inspired by the fascinating features of symmetry, convexity, and the fractional operator, we study the new 𝓗–𝓗 and related 𝓗–𝓗 type inequalities for left and right convex I∙V-Fs, based upon the pseudo order relation and the Riemann–Liouville fractional integral operator.

2. Preliminaries

First, we offer some background information on interval-valued functions, the theory of convexity, interval-valued integration, and interval-valued fractional integration, which will be utilized throughout the article.
We offer some fundamental arithmetic regarding interval analysis in this paragraph, which will be quite useful throughout the article.
Υ = Υ * ,   Υ * ,   Q = Q * ,   Q * Υ * ω   Υ *   a n d   Q * z   Q *     ω ,   z
Υ + Q = Υ * ,   Υ * + Q * ,   Q * = Υ * + Q * ,   Υ * + Q * , Υ Q = Υ * ,   Υ * Q * ,   Q * = Υ * Q * ,   Υ * Q * , Υ × Q = Υ * ,   Υ * × Q * ,   Q * = min K ,   max K min K = min Υ * Q * ,   Υ * Q * ,   Υ * Q * ,   Υ * Q * ,   max K = max Υ * Q * ,   Υ * Q * ,   Υ * Q * ,   Υ * Q * ν . Υ * ,   Υ * = ν Υ * ,   ν Υ *     if   ν > 0 ,           0                           if   ν = 0 , ν Υ * , ν Υ *     if   ν < 0 .  
Let X I , X I + , X I be the set of all closed intervals of , the set of all closed positive intervals of , and the set of all closed negative intervals of , respectively.
For Υ * ,   Υ * ,   Q * ,   Q * X I , the inclusion is defined by Υ * ,   Υ * Q * ,   Q * , if and only if, Q * Υ * , Υ * Q * .
Remark 1.
[21] The left and right relation p , defined on X I by Υ * ,   Υ * p Q * ,   Q * . , if and only if, Υ * Q * ,   Υ * Q * ,   for all Υ * ,   Υ * ,   Q * ,   Q * X I , it is a pseudo order relation. For a given Υ * ,   Υ * ,   Q * ,   Q * X I , we say that Υ * ,   Υ * p Q * ,   Q * , if and only if, Υ * Q * ,   Υ * Q * or Υ * Q * ,   Υ * < Q * .
Theorem 1.
[33] If Υ : t , s X I is an I∙V-F on such that Υ ω = Υ * ω ,   Υ * ω , then Υ is Riemann integrable over t , s , if and only if, Υ * and Υ * are both Riemann integrable over t , s , such that
I R t s Υ ω d ω = R t s Υ * ω d ω ,   R t s Υ * ω d ω .
Definition 1.
[28,30] Let  Υ   L t , s , X I + . Then, interval fractional integrals,  I t + a  and  I s a , of order  a > 0  are defined by
I t + a   Υ ω = 1 Γ a t ω ω ν a 1 Υ ν d ν ,         ω > t ,
and
I s a   Υ ω = 1 Γ a ω s ν ω a 1 Υ ν d ν ,         ( ω < s ) ,
respectively, where Γ ω = 0 ν ω 1 e ν d ν is the Euler gamma function.
Definition 2.
[31] The I∙V-F Υ : K X I + is named as the left and right convex-I∙V- F on convex set K if the coming inequality,
Υ ν ω + 1 ν z   p ν Υ ω + 1 ν ζ Υ z ,
holds for all ω ,   z K and ν 0 ,   1 we have. If inequality (3) is reversed, then Υ is named as the left and right concave on K . Υ is affine, if and only if, it is both left and right convex and left and right concave.
Theorem 2.
[31] Let Υ : K X I + be an I∙V-F, such that
Υ ω = Υ * ω ,   Υ * ω ,     ω K
for all ω K . Then, Υ is a left and right convex I∙V-F on K , if and only if, Υ * ω and Υ * ω both are convex functions.

3. Interval Fractional Hermite–Hadamard Inequalities

The major goal, and the main purpose of this section, is to develop a novel version of the 𝓗–𝓗 inequalities in the mode of interval-valued left and right convex functions.
Theorem 3.
Let Υ : s ,   t X I + be a left and right convex I∙V-F on s ,   t and provided by Υ ω = Υ * ω ,   Υ * ω for all ω s ,   t . If Υ L s ,   t , X I + , then
Υ s + t 2 p Γ a + 1 2 t s a I s + a   Υ t + I t a   Υ s p Υ s + Υ t 2 .
If Υ ω is a left and right concave I∙V-F, then
Υ s + t 2 p Γ a + 1 2 t s a I s + a   Υ t + I t a   Υ s p Υ s + Υ t 2 .
Proof. 
Let Υ : s ,   t X I + be a left and right convex I∙V-F. Then, by hypothesis, we have:
2 Υ s + t 2 p Υ ν s + 1 ν t + Υ 1 ν s + ν t .
Therefore, we have
2 Υ * s + t 2 Υ * ν s + 1 ν t + Υ * 1 ν s + ν t ,     2 Υ * s + t 2 Υ * ν s + 1 ν t + Υ * 1 ν s + ν t .
Multiplying both sides by ν a 1 and integrating the obtained result, with respect to ν over 0 , 1 , we have
2 0 1 ν a 1 Υ * s + t 2 d ν                                                                                                                                                                                       0 1 ν a 1 Υ * ν s + 1 ν t d ν + 0 1 ν a 1 Υ * 1 ν s + ν t d ν , 2 0 1 ν a 1 Υ * s + t 2 d ν   0 1 ν a 1 Υ * ν s + 1 ν t d ν + 0 1 ν a 1 Υ * 1 ν s + ν t d ν .
Let ω = ν s + 1 ν t and z = 1 ν s + ν t . Then, we have
2 a Υ * s + t 2   1 t s a   s t t z a 1 Υ * z d z + 1 t s a s t ω s a 1 Υ * ω d ω     2 a Υ * s + t 2 1 t s a   s t t z a 1 Υ * z d z + 1 t s a s t ω s a 1 Υ * ω d ω ,
Γ a t s a I s + a   Υ * t + I t a   Υ * s     Γ a t s a I s + a   Υ * t + I t a   Υ * s ,
That is,
2 a Υ * s + t 2 ,   Υ * s + t 2 p Γ a t s a I s + a   Υ * t + I t a   Υ * s ,   I s + a   Υ * t + I t a   Υ * s
Thus:
2 a   Υ s + t 2 p Γ a t s a I s + a   Υ t + I t a   Υ s
Similar to the above, we have
Γ a t s a I s + a   Υ t + I t a   Υ s p Υ s + Υ t 2
Combining (7) and (8), we have
Υ s + t 2 p Γ a + 1 2 t s a I s + a   Υ t + I t a   Υ s p Υ s + Υ t 2
Hence, we achieve the required result. □
Remark 2.
We may observe from Theorem 3 that:
Let one take α = 1 . Then, from Theorem 1 and (5), we achieve the coming inequality (see [23]):
Υ s + t 2 p 1 t s s t Υ ω d ω p Υ s +   Υ t 2
If we take Υ * ω = Υ * ω , then from Theorem 3 and (5), we acquire the coming inequality (see [32]):
Υ s + t 2 Γ a + 1 2 t s a I s + a   Υ t + I t a   Υ s Υ s + Υ t 2
Let one take a = 1 and Υ * ω = Υ * ω . Then, from Theorem 1 and (5), we achieve classical 𝓗–𝓗 type inequality.
Example 1.
Let a = 1 2 ,   ω 2 ,   3 , and the I∙V-F Υ : s ,   t = 2 ,   3 X I + , provided by Υ ω = 1 ,   2 2 ω 1 2 . Since the left and right endpoint functions, Υ * ω = 2 ω 1 2 ,   Υ * ω = 2 2 ω 1 2 , are left and rightconvex functions, then Υ ω is a left and rightconvex I∙V-F. We clearly see that Υ L s ,   t , X I + ,and
Υ * s + t 2 = Υ * 5 2 = 4 10 2 Υ * s + t 2 = Υ * 5 2 = 4 10 Υ * s + Υ * t 2 = 4 2 3 2 Υ * s + Υ * t 2 = 4 2 3
Note that
Γ a + 1 2 t s a I s + a   Υ * t + I t a   Υ * s = Γ 3 2 2 1 π 2 3 3 ω 1 2   .   2 ω 1 2 d ω + Γ 3 2 2 1 π 2 3 ω 2 1 2   .   2 ω 1 2 d ω = 1 4 7393 10 , 000 + 9501 10 , 000 = 8447 20 , 000 . Γ a + 1 2 t s a I s + a   Υ * t + I t a   Υ * s = Γ 3 2 2 1 π 2 3 3 ω 1 2   .   2 2 ω 1 2 d ω + Γ 3 2 2 1 π 2 3 ω 2 1 2   .   2 2 ω 1 2 d ω = 1 2 7393 10,000 + 9501 10,000 = 8447 10,000
Therefore,
4 10 2 , 4 10 p 8447 20,000 , 8447 10,000 p 4 2 3 2 , 4 2 3
and Theorem 3 is verified.
The upcoming two results acquire the fractional inequalities for the product of left and right convex I∙V-Fs.
Theorem 4.
Let Υ , G   : s ,   t X I + be two left and rightconvex I∙V-Fs on s ,   t , provided by Υ ω = Υ * ω ,   Υ * ω and G ω = G * ω ,   G * ω for all ω s ,   t . If Υ × G   L s ,   t , X I + , then
Γ a 2 t s a I s + a   Υ t × G t + I t a Υ s × G s p 1 2 a a + 1 a + 2 φ s , t + a a + 1 a + 2 s , t
where φ s , t = Υ s × G s + Υ t × G t , s , t = Υ s × G t + Υ t × G s , and φ s , t = φ * s , t ,   φ * s , t and s , t = * s , t ,   * s , t .
Proof. 
Since Υ ,   G are both left and right convex I∙V-Fs, then we have
    Υ * ν s + 1 ν t ν Υ * s + 1 ν Υ * t ,                                                                                                       Υ * ν s + 1 ν t ν Υ * s + 1 ν Υ * t .                                                                                                    
and
    G * ν s + 1 ν t ν G * s + 1 ν G * t ,                                                                                                                                                         G * ν s + 1 ν t ν G * s + 1 ν G * t .                                                                                                                                                          
From the definition of left and right convex I∙V-Fs, it follows that 0 p Υ ω and 0 p G ω , so
Υ * ν s + 1 ν t × G * ν s + 1 ν t ν Υ * s + 1 ν Υ * t ν G * s + 1 ν G * t = ν 2 Υ * s × G * s + 1 ν 2 Υ * t × G * t + ν 1 ν Υ * s × G * t + ν 1 ν Υ * t × G * s Υ * ν s + 1 ν t × G * ν s + 1 ν t ν Υ * s + 1 ν Υ * t ν G * s + 1 ν G * t = ν 2 Υ * s × G * s + 1 ν 2 Υ * t × G * t + ν 1 ν Υ * s × G * t + ν 1 ν Υ * t × G * s ,
Analogously, we have
Υ * 1 ν s + ν t G * 1 ν s + ν t 1 ν 2 Υ * s × G * s + ν 2 Υ * t × G * t + ν 1 ν Υ * s × G * t + ν 1 ν Υ * t × G * s Υ * 1 ν s + ν t × G * 1 ν s + ν t 1 ν 2 Υ * s × G * s + ν 2 Υ * t × G * t + ν 1 ν Υ * s × G * t + ν 1 ν Υ * t × G * s .
Adding (9) and (10), we have
Υ * ν s + 1 ν t × G * ν s + 1 ν t + Υ * 1 ν s + ν t × G * 1 ν s + ν t ν 2 + 1 ν 2 Υ * s × G * s + Υ * t × G * t + 2 ν 1 ν Υ * t × G * s + Υ * s × G * t Υ * ν s + 1 ν t × G * ν s + 1 ν t + Υ * 1 ν s + ν t × G * 1 ν s + ν t ν 2 + 1 ν 2 Υ * s × G * s + Υ * t × G * t + 2 ν 1 ν Υ * t × G * s + Υ * s × G * t .
Taking the multiplication of (11) by ν a 1 and integrating the obtained result, with respect to ν over (0, 1), we have
0 1 ν a 1 Υ * ν s + 1 ν t × G * ν s + 1 ν t + ν a 1 Υ * 1 ν s + ν t × G * 1 ν s + ν t d ν φ * s , t 0 1 ν a 1 ν 2 + 1 ν 2 d ν + 2 * s , t 0 1 ν a 1 ν 1 ν d ν   0 1 ν a 1 Υ * ν s + 1 ν t × G * ν s + 1 ν t + ν a 1 Υ * 1 ν s + ν t × G * 1 ν s + ν t d ν   φ * s , t 0 1 ν a 1 ν 2 + 1 ν 2 d ν + 2 * s , t 0 1 ν a 1 ν 1 ν d ν .
It follows that
Γ a t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s 2 a 1 2 a a + 1 a + 2 φ * s , t + 2 a a a + 1 a + 2 * s , t Γ a t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s 2 a 1 2 a a + 1 a + 2 φ * s , t + 2 a a a + 1 a + 2 * s , t ,    
Γ a t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s 2 a 1 2 a a + 1 a + 2 φ * s , t + 2 a a a + 1 a + 2 * s , t Γ a t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s   2 a 1 2 a a + 1 a + 2 φ * s , t + 2 a a a + 1 a + 2 * s , t ,    
That is,
Γ a t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s ,   I s + a   Υ * t × G * t + I t a   Υ * s × G * s p 2 a 1 2 a a + 1 a + 2 φ * s , t ,   φ * s , t + 2 a a a + 1 a + 2 * s , t ,   * s , t
Thus,
Γ a 2 t s a I s + a   Υ t × G t + I t a Υ s × G s p 1 2 a a + 1 a + 2 φ s , t + a a + 1 a + 2 s , t
and the theorem has been established. □
Example 2.
Let s , t = 0 , 2   , a = 1 2 ,   Υ ω = ω 2 , 3 ω 2 ,and G ω = ω , 3 ω . Since the left and right endpoint functions, Υ * ω = ω 2 ,   Υ * ω = 3 ω 2 , G * ω = ω and G * ω = 3 ω , are left and rightconvex functions, then Υ ω and G ω are both left and rightconvex I∙V-Fs. We clearly see that Υ ω × G ω L s ,   t , X I + , and
Γ 1 + a 2 t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s = Γ 3 2 2 2 1 π 0 2 2 ω 1 2     1 2 . ω 2 d ω + Γ 3 2 2 2 1 π 0 2 ω 1 2     1 2 . ω 2 d ω 0.7333 , Γ 1 + a 2 t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s = Γ 3 2 2 2 1 π 0 2 2 ω 1 2   . 9 2 ω 2 d ω + Γ 3 2 2 2 1 π 0 2 ω 1 2     . 9 2 ω 2 d ω 6.5997 ,
Note that
1 2 a a + 1 a + 2 φ * s , t = Υ * s × G * s + Υ * t × G * t = 11 15 ,   1 2 a a + 1 a + 2 φ * s , t = Υ * s × G * s + Υ * t × G * t = 33 5 , a a + 1 a + 2 * s , t = Υ * s × G * t + Υ * t × G * s = 2 15 0 , a a + 1 a + 2 * s , t = Υ * s × G * t + Υ * t × G * s = 2 15 0 .
Therefore, we have
1 2 a a + 1 a + 2 φ s , t + a a + 1 a + 2 s , t = 11 15 , 33 5 + 2 15 0 , 0 = 11 15 , 33 5
It follows that
0.7333 ,     6.5997   p 11 15 , 33 5
and Theorem 4 has been demonstrated.
Theorem 5.
Let Υ , G   : s ,   t X I + be two left and right convex I∙V-Fs, provided by Υ ω = Υ * ω ,   Υ * ω and G ω = G * ω ,   G * ω for all ω s ,   t . If Υ × G L s ,   t , X I + , then
1 a   Υ s + t 2 × G s + t 2 p Γ a + 1 4 t s a I s + a   Υ t × G t + I t a   Υ s × G s + 1 2 a 1 2 a a + 1 a + 2 s , t + 1 2 a a a + 1 a + 2 φ s , t
where φ s , t = Υ s × G s + Υ t × G t ,   s , t = Υ s × G t + Υ t × G s ,   φ s , t = φ * s , t ,   φ * s , t , and s , t = * s , t ,   * s , t .
Proof. 
Consider that Υ , G   : s ,   t X I + are left and right convex I∙V-Fs. Then, by hypothesis, we have
Υ * s + t 2   × G * s + t 2   Υ * s + t 2 × G * s + t 2
1 4 Υ * ν s + 1 ν t × G * ν s + 1 ν t + Υ * ν s + 1 ν t × G * 1 ν s + ν t + 1 4 Υ * 1 ν s + ν t × G * ν s + 1 ν t + Υ * 1 ν s + ν t × G * 1 ν s + ν t 1 4 Υ * ν s + 1 ν t × G * ν s + 1 ν t + Υ * ν s + 1 ν t × G * 1 ν s + ν t + 1 4 Υ * 1 ν s + ν t × G * ν s + 1 ν t + Υ * 1 ν s + ν t × G * 1 ν s + ν t ,
1 4 Υ * ν s + 1 ν t × G * ν s + 1 ν t + Υ * 1 ν s + ν t × G * 1 ν s + ν t   + 1 4 ν Υ * s + 1 ν Υ * t × 1 ν G * s + ν G * t + 1 ν Υ * s + ν Υ * t × ν G * s + 1 ν G * t     1 4 Υ * ν s + 1 ν t × G * ν s + 1 ν t + Υ * 1 ν s + ν t × G * 1 ν s + ν t + 1 4 ν Υ * s + 1 ν Υ * t × 1 ν G * s + ν G * t + 1 ν Υ * s + ν Υ * t × ν G * s + 1 ν G * t ,
= 1 4 Υ * ν s + 1 ν t × G * ν s + 1 ν t + Υ * 1 ν s + ν t × G * 1 ν s + ν t + 1 4 ν 2 + 1 ν 2 * s , t + ν 1 ν + 1 ν ν φ * s , t = 1 4 Υ * ν s + 1 ν t × G * ν s + 1 ν t + Υ * 1 ν s + ν t × G * 1 ν s + ν t + 1 4 ν 2 + 1 ν 2 * s , t + ν 1 ν + 1 ν ν φ * s , t .
Taking the multiplication of (12) with ν a 1 and integrating over 0 ,   1 , we get
1 a   Υ * s + t 2 × G * s + t 2 1 4 t s a   s t t ω a 1 Υ * ω × G * ω d ω   + s t z s a 1 Υ * z × G * z d z   + 1 2 a 1 2 a a + 1 a + 2 * s , t + 1 2 a a a + 1 a + 2 φ * s , t = Γ a + 1 4 t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s     + 1 2 a 1 2 a a + 1 a + 2 * s , t + 1 2 a a a + 1 a + 2 φ * s , t 1 a   Υ * s + t 2 × G * s + t 2   1 4 t s a   s t t ω a 1 Υ * ω × G * ω d ω   + s t z s a 1 Υ * z × G * z d z   + 1 2 a 1 2 a a + 1 a + 2 * s , t + 1 2 a a a + 1 a + 2 φ * s , t = Γ a + 1 4 t s a I s + a   Υ * t × G * t + I t a   Υ * s × G * s + 1 2 a 1 2 a a + 1 a + 2 * s , t + 1 2 a a a + 1 a + 2 φ * s , t ,
That is,
1 a   Υ s + t 2 × G s + t 2 p Γ a + 1 4 t s a I s + a   Υ t × G t + I t a   Υ s × G s + 1 2 a 1 2 a a + 1 a + 2 s , t + 1 2 a a a + 1 a + 2 φ s , t .
Hence, the required result is achieved. □
The upcoming results discuss the 𝓗–𝓗 Fejér type inequality left and right convex I∙V-F. Firstly, we achieve second 𝓗–𝓗 Fejér type inequality.
Theorem 6.
Let Υ : s ,   t X I + be a left and right convex I∙V-F, with s < t , provided by Υ ω = Υ * ω ,   Υ * ω for all ω s ,   t . Let Υ L s ,   t , X I + and : s ,   t ,   ω 0 , be symmetric with respect to s + t 2 . Then,
I s + a   Υ t + I t a   Υ s p Υ s + Υ t 2 I s + a   t + I t a   s
If Υ is a concave I∙V-F, then inequality (13) is reversed.
Proof. 
Let Υ be a left and right convex I∙V-F and ν a 1 ν s + 1 ν t 0 . Then, we have
ν a 1 Υ * ν s + 1 ν t C ν s + 1 ν t ν a 1 ν Υ * s + 1 ν Υ * t C ν s + 1 ν t ν a 1 Υ * ν s + 1 ν t ν s + 1 ν t ν a 1 ν Υ * s + 1 ν Υ * t ν s + 1 ν t .
and
ν a 1 Υ * 1 ν s + ν t C 1 ν s + ν t ν a 1 1 ν Υ * s + ν Υ * t C 1 ν s + ν t ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t ν a 1 1 ν Υ * s + ν Υ * t 1 ν s + ν t .
After adding (14) and (15), and integrating over 0 ,   1 , we get
0 1 ν a 1 Υ * ν s + 1 ν t ν s + 1 ν t d ν + 0 1 ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t d ν     0 1 ν a 1 Υ * s ν ν s + 1 ν t + 1 ν 1 ν s + ν t + ν a 1 Υ * t 1 ν ν s + 1 ν t + ν 1 ν s + ν t d ν , 0 1 ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t d ν     + 0 1 ν a 1 Υ * ν s + 1 ν t ν s + 1 ν t d ν   0 1 ν a 1 Υ * s ν ν s + 1 ν t + 1 ν 1 ν s + ν t + ν a 1 Υ * t 1 ν ν s + 1 ν t + ν 1 ν s + ν t d ν ,
= Υ * s 0 1 ν a 1 C ν s + 1 ν t d ν + Υ * t 0 1 ν a 1 C 1 ν s + ν t d ν , = Υ * s 0 1 ν a 1 C ν s + 1 ν t d ν + Υ * t 0 1 ν a 1 C 1 ν s + ν t d ν .
Since is symmetric, then
= Υ * s + Υ * t 0 1 ν a 1 C 1 ν s + ν t d ν = Υ * s + Υ * t 0 1 ν a 1 C 1 ν s + ν t d ν .
    = Υ * s + Υ * t 2 Γ a t s a I s + a   t + I t a   s , = Υ * s + Υ * t 2 Γ a t s a I s + a   t + I t a   s .
Since
0 1 ν a 1 Υ * ν s + 1 ν t 1 ν s + ν t d ν + 0 1 ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t d ν = 1 t s a   s t ω s a 1 Υ * s + t ω ω d ω   + 1 t s a   s t ω s a 1 Υ * ω ω d ω = 1 t s a   s t ω s a 1 Υ * ω s + t ω d ω + 1 t s a   s t ω s a 1 Υ * ω ω d ω = Γ a t s a I s + a   Υ * t + I t a   Υ * s , 0 1 ν a 1 Υ * ν s + 1 ν t 1 ν s + ν t d ν     + 0 1 ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t d ν = Γ a t s a I s + a   Υ * t + I t a   Υ * s .
then, from (16), we have
Γ a t s a I s + a   Υ * t + I t a   Υ * s Υ * s + Υ * t 2 Γ a t s a I s + a   t + I t a   s Υ * s + Υ * t 2 Γ a t s a I s + a   t + I t a   s , Γ a t s a I s + a   Υ * t + I t a   Υ * s Υ * s + Υ * t 2 Γ a t s a I s + a   t + I t a   s Υ * s + Υ * t 2 Γ a t s a I s + a   t + I t a   s ,
That is,
Γ a t s a I s + a   Υ * t + I t a   Υ * s ,   I s + a   Υ * t + I t a   Υ * s
p Γ a t s a Υ * s + Υ * t 2 ,   Υ * s + Υ * t 2 I s + a   t + I t a   s
p Γ a t s a Υ * s + Υ * t 2 ,   Υ * s + Υ * t 2 I s + a   t + I t a   s ,
Hence,
I s + a   Υ t   p   I t a   Υ s p Υ s + Υ t 2 I s + a   t + I t a   s
p Υ s + Υ t 2 I s + a   t + I t a   s .
Now, we first obtain the 𝓗–𝓗 Fejér type inequality for the left and right convex I∙V-F. □
Theorem 7.
Let Υ : s ,   t X I + be a left and right convex I∙V-F, with s < t , and defined by Υ ω = Υ * ω ,   Υ * ω for all ω s ,   t . If Υ   L s ,   t , X I + and : s ,   t ,   ω 0 are symmetric with respect to s + t 2 , then
Υ s + t 2 I s + a   t + I t a   s p I s + a   Υ t + I t a   Υ s
If Υ is a concave I∙V-F, then inequality (18) is reversed.
Proof. 
Since Υ is a left and right convex I∙V-F, then we have
    Υ * s + t 2 1 2 Υ * ν s + 1 ν t + Υ * 1 ν s + ν t Υ * s + t 2 1 2 Υ * ν s + 1 ν t + Υ * 1 ν s + ν t ,
Since ν s + 1 ν t = 1 ν s + ν t , then by multiplying (19) by ν a 1 1 ν s + ν t and integrating it, with respect to ν over 0 ,   1 , we obtain
Υ * s + t 2 0 1 ν a 1 1 ν s + ν t d ν 1 2 0 1 ν a 1 Υ * ν s + 1 ν t 1 ν s + ν t d ν + 0 1 ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t d ν , Υ * s + t 2 0 1 1 ν s + ν t d ν 1 2 0 1 ν a 1 Υ * ν s + 1 ν t 1 ν s + ν t d ν + 0 1 ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t d ν
Let ω = 1 ν s + ν t . Then, we have
0 1 ν a 1 Υ * ν s + 1 ν t 1 ν s + ν t d ν + 0 1 ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t d ν = 1 t s a   s t ω s a 1 Υ * s + t ω ω d ω   + 1 t s a   s t ω s a 1 Υ * ω ω d ω   = 1 t s a   s t ω s a 1 Υ * ω s + t ω d ω + 1 t s a   s t ω s a 1 Υ * ω ω d ω = Γ a t s a I s + a   Υ * t + I t a   Υ * s , 0 1 ν a 1 Υ * ν s + 1 ν t 1 ν s + ν t d ν     + 0 1 ν a 1 Υ * 1 ν s + ν t 1 ν s + ν t d ν = Γ a t s a I s + a   Υ * t + I t a   Υ * s .
Then, from (21), we have
Γ a t s a Υ * s + t 2 I s + a   t + I t a   s                                                         Γ a t s a   I s + a   Υ * t + I t a   Υ * s Γ a t s a Υ * s + t 2 I s + a   t + I t a   s                                                         Γ a t s a   I s + a   Υ * t + I t a   Υ * s
from which, we have
Γ a t s a Υ * s + t 2 ,   Υ * s + t 2 I s + a   t + I t a   s p Γ a t s a   I s + a   Υ * t + I t a   Υ * s ,   I s + a   Υ * t + I t a   Υ * s ,
That is,
Γ a t s a Υ s + t 2 I s + a   t + I t a   s
p Γ a t s a   I s + a   Υ t + I t a   Υ s .
This completes the proof. □
Example 3.
We consider the I∙V-F Υ : 0 ,   2 X I + , defined by Υ ω = 2 ω , 2 2 ω . Since endpoint functions Υ * ω ,   Υ * ω are convex functions, then Υ ω is a left and rightconvex I∙V-F. If
ω = ω ,             ω 0 , 1 , 2 ω ,       ω 1 ,   2 ,  
then 2 ω = ω 0 for all ω 0 ,   2 . Since Υ * ω = 2 ω and Υ * ω = 2 2 ω , if a = 1 2 , then we compute the following:
I s + a   Υ t + ˜ I t a   Υ s p Υ s + Υ t 2 I s + a   t + I t a   s
Υ * s + Υ * t 2 I s + a   t + I t a   s = π 2 4 2 2 Υ * s + ˜ Υ * t 2 I s + a   t + I t a   s = π 2 4 2 ,
Υ * s + Υ * t 2 I s + a   t + I t a   s = π 2 4 2 2 Υ * s + ˜ Υ * t 2 I s + a   t + I t a   s = π 2 4 2 ,
I s + a   Υ * t + I t a   Υ * s = 1 π 2 π + 4 8 2 3 ,   I s + a   Υ * t + I t a   Υ * s = 2 π 2 π + 4 8 2 3 .  
From (22)–(24), (13) we have
1 π 2 π + 4 8 2 3 ,   2 2 π + 4 8 2 3   p π 2 4 2 2 ,   4 2 = π 2 4 2 2 ,   4 2 .
Hence, Theorem 6 is verified.
For Theorem 7, we have
Υ * s + t 2 I s + a   t + I t a   s = π ,   Υ * s + t 2 I s + a   t + I t a   s = 2 π .  
From (24) and (25), we have
π 1 ,   2   p 1 π 2 π + 4 8 2 3 ,     2 2 π + 4 8 2 3
Hence, (18) has been verified.
Remark 3.
If one takes ω = 1 , then, from (13) and (18), we acquire (5).
Let us take a = 1 . Then, we achieve the coming inequality (see [22]).
Υ s + t 2 p 1 s t ω d ω s t Υ ω ω d ω p Υ s + Υ t 2
If we take Υ * ω = Υ * ω , then from (13) and (18), we acquire the coming inequality (see [33]).
Υ s + t 2 I s + a   t + I t a   s p I s + a   Υ t + I t a   Υ s
p Υ s + Υ t 2 I s + a   t + I t a   s
If one takes Υ * ω = Υ * ω with a = 1 , then from (13) and (18), we achieve the classical 𝓗–𝓗 Fejér inequality (see [26]).

4. Conclusions

In applied sciences, convex functions and fractional calculus are essential. The new interval-valued left and right convex functions are presented in this article. Some novel Riemann–Liouville fractional integral 𝓗–𝓗 and Fejér-type inequalities are provided, utilizing the idea of interval-valued left and right convex functions and some supplementary interval analysis findings. Our results are a generalization of a number of previously published findings. In the future, we will use generalized interval and fuzzy Riemann–Liouville fractional operators to investigate this concept for generalized left and right convex I∙V-Fs and F-I∙V-Fs by using interval Katugampola fractional integrals and fuzzy Katugampola fractional integrals. For applications, see [53,54,55,56].

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, S.T., H.G.Z., and M.S.S.; formal analysis, G.S.-G.; investigation, M.S.S.; resources, S.T. and J.E.M.-D.; data curation, H.G.Z.; writing—original draft preparation, H.G.Z., M.B.K., and G.S.-G.; writing—review and editing, S.T. and M.B.K.; visualization, J.E.M.-D., and H.G.Z.; supervision, M.S.S. and M.B.K.; project administration, M.B.K.; funding acquisition, M.S.S., G.S.-G., and H.G.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. This work was funded by Taif University Researchers Supporting Project (number TURSP-2020/345), Taif University, Taif, Saudi Arabia. Moreover, the work of Santos-García was also partially supported by the Spanish project TRACES TIN2015-67522-C3-3-R.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
  2. Hadamard, J. Étude sur les Propriétés des Fonctions Entières en Particulier d’une Fonction Considérée par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
  3. Özdemir, M.E.; Avci, M.; Set, E. On Some Inequalities of Hermite-Hadamard Type via M-Convexity. Appl. Math. Lett. 2010, 23, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
  4. Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofel, T.A. Hermite–Hadamard Type Inequalities via Generalized Harmonic Exponential Convexity. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar] [CrossRef]
  5. İşcan, I. Hermite-Hadamard Type Inequalities for Harmonically Convex Functions. Hacet. J. Math. Stat. 2013, 43, 935–942. [Google Scholar] [CrossRef]
  6. Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. Hermite–Hadamard–Type Inequalities via N–Polynomial Exponential–Type Convexity and Their Applications. Adv. Differ. Equ. 2020, 2020, 508. [Google Scholar] [CrossRef]
  7. Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. N–Polynomial Exponential–Type P–Convex Function with Some Related Inequalities and Their Application. Heliyon 2020, 6, e05420. [Google Scholar] [CrossRef]
  8. Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New Estimations of Hermite–Hadamard Type Integral Inequalities for Special Functions. Fractal Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
  9. Tariq, M.; Nasir, J.; Sahoo, S.K.; Mallah, A.A. A Note on Some Ostrowski Type Inequalities via Generalized Exponentially Convex Functions. J. Math. Anal. Model 2021, 2, 1–15. [Google Scholar] [CrossRef]
  10. Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; de la Sen, M. Hermite–Hadamard Type Inequalities Involving K-Fractional Operator for (H,M)-Convex Functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
  11. Oader, T.G.H. Some Inequalities for M-Convex Functions. Stud. Univ. Babes-Bolyai Math. 1993, 38, 21–28. [Google Scholar]
  12. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA Monographs. 2000. Available online: http://rgmia.vu.edu.au/monographs/hermitehadamard.html (accessed on 1 July 2021).
  13. Tariq, M.; Ahmad, H.; Sahoo, S.K. The Hermite-Hadamard Type Inequality and Its Estimations via Generalized Convex Functions of Raina Type. Math. Model. Numer. Simul. Appl. (MMNSA) 2021, 1, 32–43. [Google Scholar] [CrossRef]
  14. Atangana, A. Modelling the Spread of COVID-19 with New Fractal-Fractional Operators: Can the Lockdown Save Mankind Before Vaccination? Chaos Solitons Fractals 2020, 136, 109860. [Google Scholar] [CrossRef] [PubMed]
  15. Danane, J.; Allali, K.; Hammouch, Z. Mathematical Analysis of a Fractional Differential Model of HBV Infection with Antibody Immune Response. Chaos Solitons Fractals 2020, 136, 109787. [Google Scholar] [CrossRef]
  16. Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A Fractional Epidemiological Model for Computer Viruses Pertaining to a New Fractional Derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
  17. Kumar, S.; Kumar, A.; Samet, B.; Dutta, H. A Study on Fractional Host Parasitoid Population Dynamical Model to Describe Insect Species. Numer. Methods Part. Differ. Equ. 2020, 37, 1673–1692. [Google Scholar] [CrossRef]
  18. Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical Solitons to the Fractional Perturbed NLSE in Nano-Fibers. Discret. Cont. Dyn. Syst. 2020, 3, 925–936. [Google Scholar]
  19. Veeresha, P.; Baskonus, H.M.; Prakasha, D.G.; Gao, W.; Yel, G. Regarding New Numerical Solution of Fractional Schistosomiasis Disease Arising in Biological Phenomena. Chaos Solitons Fractals 2020, 133, 109–661. [Google Scholar] [CrossRef]
  20. Mubeen, S.; Iqbal, S.; Rahman, G. Contiguous Function Relations and an Integral Representation for Appell K-Series F1,K. Int. J. Math. Res. 2015, 4, 53–63. [Google Scholar] [CrossRef] [Green Version]
  21. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard Type Inequalities for -Convex Fuzzy-Interval-Valued Functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  22. Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.S.; Ismail, K.A.; Elfasakhany, A. Some Inequalities for LR-$$\left ({h} _ {1},{h} _ {2}\right) $$ h 1, h 2-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 180. [Google Scholar] [CrossRef]
  23. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J. Some New Fractional Estimates of Inequalities for LR-P-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms 2021, 10, 175. [Google Scholar] [CrossRef]
  24. Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. Inf. Sci. 2021, 15, 459–470. [Google Scholar]
  25. Kunt, M.; İşcan, İ. Hermite–Hadamard–Fejer Type Inequalities for P-Convex Functions. Arab. J. Math. Sci. 2017, 23, 215–230. [Google Scholar] [CrossRef] [Green Version]
  26. Fej’er, L. Uberdie Fourierreihen II. Math. Naturwise. Anz, Ungar. Akad. Wiss 1906, 24, 369–390. [Google Scholar]
  27. Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some Integral Inequalities for Harmonically H-Convex Functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
  28. Lupulescu, V. Fractional Calculus for Interval-Valued Functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
  29. Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  30. Budak, H.; Tunç, T.; Sarikaya, M. Fractional Hermite-Hadamard-Type Inequalities for Interval-Valued Functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
  31. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s Inequalities for Set-Valued and Fuzzy Set-Valued Functions. Fuzzy Sets Syst. 2021, 404, 178–204. [Google Scholar] [CrossRef]
  32. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s Inequalities for Fractional Integrals and Related Fractional Inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  33. Işcan, I. Hermite-Hadamard-Fejer Type Inequalities for Convex Functions via Fractional Integrals. Stud. Univ. Babes-Bolyai, Mathematica 2015, 60, 355–366. [Google Scholar]
  34. Chen, F. A Note on Hermite-Hadamard Inequalities for Products of Convex Functions via Riemann-Liouville Fractional Integrals. Ital. J. Pure Appl. Math. 2014, 33, 299–306. [Google Scholar]
  35. Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized P-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
  36. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Macías-Díaz, J.E.; Hamed, Y.S. Some New Versions of Integral Inequalities for Log-Preinvex Fuzzy-Interval-Valued Functions through Fuzzy Order Relation. Alex. Eng. J. 2022, 6, 7089–7101. [Google Scholar] [CrossRef]
  37. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Guirao, J.L.; Jawa, T.M. Fuzzy-Interval Inequalities for Generalized Preinvex Fuzzy Interval Valued Functions. Math. Biosci. Eng. 2022, 19, 812–835. [Google Scholar] [CrossRef]
  38. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
  39. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New Fuzzy-Interval Inequalities in Fuzzy-Interval Fractional Calculus by Means of Fuzzy Order Relation. AIMS Math. 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
  40. Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Guirao, J.L.; Noor, K.I. Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
  41. Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some Novel Inequalities for LR-H-Convex Interval-Valued Functions by Means of Pseudo-Order Relation. Math. Methods Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
  42. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some New Classes of Preinvex Fuzzy-Interval-Valued Functions and Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  43. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann-Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  44. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen Inequalities for Log-S-Convex Fuzzy-Interval-Valued Functions in the Second Sense. Complex Intell. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
  45. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically Convex Fuzzy-Interval-Valued Functions and Fuzzy-Interval Riemann–Liouville Fractional Integral Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
  46. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abualnaja, K.M. Fuzzy Integral Inequalities on Coordinates of Convex Fuzzy Interval-Valued Functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef]
  47. Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
  48. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some New Jensen, Schur and Hermite-Hadamard Inequalities for Log Convex Fuzzy Interval-Valued Functions. AIMS Math. 2022, 7, 4338–4358. [Google Scholar] [CrossRef]
  49. Khan, M.B.; Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry 2021, 13, 2352. [Google Scholar] [CrossRef]
  50. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Baleanu, D.; Jawa, T.M. Fuzzy-Interval Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals. AIMS Math. 2022, 7, 1507–1535. [Google Scholar] [CrossRef]
  51. Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard Inequalities for Generalized Convex Functions in Interval-Valued Calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
  52. Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
  53. Konwar, N.; Debnath, P. Continuity and Banach Contraction Principle in Intuitionistic Fuzzy N-Normed Linear Spaces. J. Intell. Fuzzy Syst. 2017, 33, 2363–2373. [Google Scholar] [CrossRef]
  54. Konwar, N.; Davvaz, B.; Debnath, P. Approximation of New Bounded Operators in Intuitionistic Fuzzy N-Banach Spaces. J. Intell. Fuzzy Syst. 2018, 35, 6301–6312. [Google Scholar] [CrossRef]
  55. Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators. Int. J. Comput. Intell. Syst. 2022, 15, 1–12. [Google Scholar] [CrossRef]
  56. Sahoo, S.K.; Tariq, M.; Ahmad, H.; Aly, A.A.; Felemban, B.F.; Thounthong, P. Some Hermite–Hadamard-Type Fractional Integral Inequalities Involving Twice-Differentiable Mappings. Symmetry 2021, 13, 2209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Santos-García, G.; Macías-Díaz, J.E.; Soliman, M.S. Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities. Symmetry 2022, 14, 341. https://doi.org/10.3390/sym14020341

AMA Style

Khan MB, Zaini HG, Treanțǎ S, Santos-García G, Macías-Díaz JE, Soliman MS. Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities. Symmetry. 2022; 14(2):341. https://doi.org/10.3390/sym14020341

Chicago/Turabian Style

Khan, Muhammad Bilal, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, and Mohamed S. Soliman. 2022. "Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities" Symmetry 14, no. 2: 341. https://doi.org/10.3390/sym14020341

APA Style

Khan, M. B., Zaini, H. G., Treanțǎ, S., Santos-García, G., Macías-Díaz, J. E., & Soliman, M. S. (2022). Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities. Symmetry, 14(2), 341. https://doi.org/10.3390/sym14020341

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop