Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
Abstract
:1. Introduction
2. Preliminaries
3. Interval Fractional Hermite–Hadamard Inequalities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hadamard, J. Étude sur les Propriétés des Fonctions Entières en Particulier d’une Fonction Considérée par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
- Özdemir, M.E.; Avci, M.; Set, E. On Some Inequalities of Hermite-Hadamard Type via M-Convexity. Appl. Math. Lett. 2010, 23, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofel, T.A. Hermite–Hadamard Type Inequalities via Generalized Harmonic Exponential Convexity. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar] [CrossRef]
- İşcan, I. Hermite-Hadamard Type Inequalities for Harmonically Convex Functions. Hacet. J. Math. Stat. 2013, 43, 935–942. [Google Scholar] [CrossRef]
- Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. Hermite–Hadamard–Type Inequalities via N–Polynomial Exponential–Type Convexity and Their Applications. Adv. Differ. Equ. 2020, 2020, 508. [Google Scholar] [CrossRef]
- Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. N–Polynomial Exponential–Type P–Convex Function with Some Related Inequalities and Their Application. Heliyon 2020, 6, e05420. [Google Scholar] [CrossRef]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New Estimations of Hermite–Hadamard Type Integral Inequalities for Special Functions. Fractal Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
- Tariq, M.; Nasir, J.; Sahoo, S.K.; Mallah, A.A. A Note on Some Ostrowski Type Inequalities via Generalized Exponentially Convex Functions. J. Math. Anal. Model 2021, 2, 1–15. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; de la Sen, M. Hermite–Hadamard Type Inequalities Involving K-Fractional Operator for (H,M)-Convex Functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Oader, T.G.H. Some Inequalities for M-Convex Functions. Stud. Univ. Babes-Bolyai Math. 1993, 38, 21–28. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA Monographs. 2000. Available online: http://rgmia.vu.edu.au/monographs/hermitehadamard.html (accessed on 1 July 2021).
- Tariq, M.; Ahmad, H.; Sahoo, S.K. The Hermite-Hadamard Type Inequality and Its Estimations via Generalized Convex Functions of Raina Type. Math. Model. Numer. Simul. Appl. (MMNSA) 2021, 1, 32–43. [Google Scholar] [CrossRef]
- Atangana, A. Modelling the Spread of COVID-19 with New Fractal-Fractional Operators: Can the Lockdown Save Mankind Before Vaccination? Chaos Solitons Fractals 2020, 136, 109860. [Google Scholar] [CrossRef] [PubMed]
- Danane, J.; Allali, K.; Hammouch, Z. Mathematical Analysis of a Fractional Differential Model of HBV Infection with Antibody Immune Response. Chaos Solitons Fractals 2020, 136, 109787. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A Fractional Epidemiological Model for Computer Viruses Pertaining to a New Fractional Derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Samet, B.; Dutta, H. A Study on Fractional Host Parasitoid Population Dynamical Model to Describe Insect Species. Numer. Methods Part. Differ. Equ. 2020, 37, 1673–1692. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical Solitons to the Fractional Perturbed NLSE in Nano-Fibers. Discret. Cont. Dyn. Syst. 2020, 3, 925–936. [Google Scholar]
- Veeresha, P.; Baskonus, H.M.; Prakasha, D.G.; Gao, W.; Yel, G. Regarding New Numerical Solution of Fractional Schistosomiasis Disease Arising in Biological Phenomena. Chaos Solitons Fractals 2020, 133, 109–661. [Google Scholar] [CrossRef]
- Mubeen, S.; Iqbal, S.; Rahman, G. Contiguous Function Relations and an Integral Representation for Appell K-Series F1,K. Int. J. Math. Res. 2015, 4, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard Type Inequalities for -Convex Fuzzy-Interval-Valued Functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.S.; Ismail, K.A.; Elfasakhany, A. Some Inequalities for LR-$$\left ({h} _ {1},{h} _ {2}\right) $$ h 1, h 2-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 180. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J. Some New Fractional Estimates of Inequalities for LR-P-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms 2021, 10, 175. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. Inf. Sci. 2021, 15, 459–470. [Google Scholar]
- Kunt, M.; İşcan, İ. Hermite–Hadamard–Fejer Type Inequalities for P-Convex Functions. Arab. J. Math. Sci. 2017, 23, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Fej’er, L. Uberdie Fourierreihen II. Math. Naturwise. Anz, Ungar. Akad. Wiss 1906, 24, 369–390. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some Integral Inequalities for Harmonically H-Convex Functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
- Lupulescu, V. Fractional Calculus for Interval-Valued Functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
- Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Budak, H.; Tunç, T.; Sarikaya, M. Fractional Hermite-Hadamard-Type Inequalities for Interval-Valued Functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s Inequalities for Set-Valued and Fuzzy Set-Valued Functions. Fuzzy Sets Syst. 2021, 404, 178–204. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s Inequalities for Fractional Integrals and Related Fractional Inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Işcan, I. Hermite-Hadamard-Fejer Type Inequalities for Convex Functions via Fractional Integrals. Stud. Univ. Babes-Bolyai, Mathematica 2015, 60, 355–366. [Google Scholar]
- Chen, F. A Note on Hermite-Hadamard Inequalities for Products of Convex Functions via Riemann-Liouville Fractional Integrals. Ital. J. Pure Appl. Math. 2014, 33, 299–306. [Google Scholar]
- Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized P-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Macías-Díaz, J.E.; Hamed, Y.S. Some New Versions of Integral Inequalities for Log-Preinvex Fuzzy-Interval-Valued Functions through Fuzzy Order Relation. Alex. Eng. J. 2022, 6, 7089–7101. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Guirao, J.L.; Jawa, T.M. Fuzzy-Interval Inequalities for Generalized Preinvex Fuzzy Interval Valued Functions. Math. Biosci. Eng. 2022, 19, 812–835. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New Fuzzy-Interval Inequalities in Fuzzy-Interval Fractional Calculus by Means of Fuzzy Order Relation. AIMS Math. 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Guirao, J.L.; Noor, K.I. Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some Novel Inequalities for LR-H-Convex Interval-Valued Functions by Means of Pseudo-Order Relation. Math. Methods Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some New Classes of Preinvex Fuzzy-Interval-Valued Functions and Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann-Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
- Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen Inequalities for Log-S-Convex Fuzzy-Interval-Valued Functions in the Second Sense. Complex Intell. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically Convex Fuzzy-Interval-Valued Functions and Fuzzy-Interval Riemann–Liouville Fractional Integral Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abualnaja, K.M. Fuzzy Integral Inequalities on Coordinates of Convex Fuzzy Interval-Valued Functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some New Jensen, Schur and Hermite-Hadamard Inequalities for Log Convex Fuzzy Interval-Valued Functions. AIMS Math. 2022, 7, 4338–4358. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry 2021, 13, 2352. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Baleanu, D.; Jawa, T.M. Fuzzy-Interval Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals. AIMS Math. 2022, 7, 1507–1535. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard Inequalities for Generalized Convex Functions in Interval-Valued Calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
- Konwar, N.; Debnath, P. Continuity and Banach Contraction Principle in Intuitionistic Fuzzy N-Normed Linear Spaces. J. Intell. Fuzzy Syst. 2017, 33, 2363–2373. [Google Scholar] [CrossRef]
- Konwar, N.; Davvaz, B.; Debnath, P. Approximation of New Bounded Operators in Intuitionistic Fuzzy N-Banach Spaces. J. Intell. Fuzzy Syst. 2018, 35, 6301–6312. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators. Int. J. Comput. Intell. Syst. 2022, 15, 1–12. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Aly, A.A.; Felemban, B.F.; Thounthong, P. Some Hermite–Hadamard-Type Fractional Integral Inequalities Involving Twice-Differentiable Mappings. Symmetry 2021, 13, 2209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Santos-García, G.; Macías-Díaz, J.E.; Soliman, M.S. Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities. Symmetry 2022, 14, 341. https://doi.org/10.3390/sym14020341
Khan MB, Zaini HG, Treanțǎ S, Santos-García G, Macías-Díaz JE, Soliman MS. Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities. Symmetry. 2022; 14(2):341. https://doi.org/10.3390/sym14020341
Chicago/Turabian StyleKhan, Muhammad Bilal, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, and Mohamed S. Soliman. 2022. "Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities" Symmetry 14, no. 2: 341. https://doi.org/10.3390/sym14020341
APA StyleKhan, M. B., Zaini, H. G., Treanțǎ, S., Santos-García, G., Macías-Díaz, J. E., & Soliman, M. S. (2022). Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities. Symmetry, 14(2), 341. https://doi.org/10.3390/sym14020341