Body Composition Symmetry in Aircraft Pilots
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Practical Application
4.2. Limitation of the Study and Future Research Lines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, U.; Parkash, V.; Mandal, M.K. Stress in Extreme Conditions: A Military Perspective. Stress Work Perspect. Underst. Manag. Stress 2013, 21, 101–128. [Google Scholar]
- Gates, M.A.; Holowka, D.W.; Vasterling, J.J.; Keane, T.M.; Marx, B.P.; Rosen, R.C. Posttraumatic Stress Disorder in Veterans and Military Personnel: Epidemiology, Screening, and Case Recognition. Psychol. Serv. 2012, 9, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weeks, S.R.; McAuliffe, C.L.; DuRussel, D.; Pasquina, P.F. Physiological and Psychological Fatigue in Extreme Conditions: The Military Example. PM&R 2010, 2, 438–441. [Google Scholar]
- Brunet, A.; Monson, E.; Liu, A.; Fikretoglu, D. Trauma Exposure and Posttraumatic Stress Disorder in the Canadian Military. Can. J. Psychiatry 2015, 60, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Olsen, O.K.; Pallesen, S.; Jarle, E. The Impact of Partial Sleep Deprivation on Moral Reasoning in Military Officers. Sleep 2010, 33, 1086–1090. [Google Scholar] [CrossRef] [Green Version]
- Kolka, M.A.; Latzka, W.A.; Montain, S.J.; Corr, W.P.; O’Brien, K.K.; Sawka, M.N. Effectiveness of Revised Fluid Replacement Guidelines for Military Training in Hot Weather. Aviat. Space Environ. Med. 2003, 74, 242–246. [Google Scholar]
- Gutiérrez, H.M.; Bastidas, A.R.; Pachón, L.; Hincapié, G.A. Indirect Oxygen Consumption (VO2) in Military Diagnosed with Acute Mountain Sickness. Rev. Med. 2015, 23, 17–23. [Google Scholar]
- Thomas, J.L.; Adler, A.B.; Wittels, P.; Enne, R.; Johannes, B. Comparing Elite Soldiers’ Perceptions of Psychological and Physical Demands during Military Training. Mil. Med. 2004, 169, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Richmond, V.L.; Horner, F.E.; Wilkinson, D.M.; Rayson, M.P.; Wright, A.; Izard, R. Energy Balance and Physical Demands during an 8-Week Arduous Military Training Course. Mil. Med. 2014, 179, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Vaara, J.P.; Groeller, H.; Drain, J.; Kyröläinen, H.; Pihlainen, K.; Ojanen, T.; Connaboy, C.; Santtila, M.; Agostinelli, P.; Nindl, B.C. Physical Training Considerations for Optimizing Performance in Essential Military Tasks. Eur. J. Sport Sci. 2021, 1930193. [Google Scholar] [CrossRef]
- Gharasi-Manshadi, M.; Meskarpour-Amiri, M.; Mehdizadeh, P. Lost Productivity among Military Personnel with Cardiovascular Disease. BMJ Mil. Health 2018, 164, 235–239. [Google Scholar] [CrossRef]
- Hartmann, E.; Sunde, T.; Kristensen, W.; Martinussen, M. Psychological Measures as Predictors of Military Training Performance. J. Personal. Assess. 2003, 80, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.R.; DeGroot, D.W.; Grier, T.L.; Hauret, K.G.; Nindl, B.C.; East, W.B.; McGurk, M.S.; Jones, B.H. Body Mass Index Predicts Selected Physical Fitness Attributes but Is Not Associated with Performance on Military Relevant Tasks in US Army Soldiers. J. Sci. Med. Sport 2017, 20, S79–S84. [Google Scholar] [CrossRef] [PubMed]
- Orantes-Gonzalez, E.; Heredia-Jimenez, J.; Escabias, M. Body Mass Index and Aerobic Capacity: The Key Variables for Good Performance in Soldiers. Eur. J. Sport Sci. 2021, 1956599. [Google Scholar] [CrossRef]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2221. [Google Scholar] [CrossRef] [Green Version]
- Voss, J.D.; Pavela, G.; Stanford, F.C. Obesity as a Threat to National Security: The Need for Precision Engagement. Int. J. Obes. 2019, 43, 437–439. [Google Scholar] [CrossRef] [Green Version]
- Friedl, K.E. Body Composition and Military Performance—Many Things to Many People. J. Strength Cond. Res. 2012, 26, S87–S100. [Google Scholar] [CrossRef]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current Status of Body Composition Assessment in Sport. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Hoerster, K.D.; Lehavot, K.; Simpson, T.; McFall, M.; Reiber, G.; Nelson, K.M. Health and Health Behavior Differences: US Military, Veteran, and Civilian Men. Am. J. Prev. Med. 2012, 43, 483–489. [Google Scholar] [CrossRef]
- Harty, P.S.; Friedl, K.E.; Nindl, B.C.; Harry, J.R.; Vellers, H.L.; Tinsley, G.M. Military Body Composition Standards and Physical Performance: Historical Perspectives and Future Directions. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef]
- Villafaina, S.; Fuentes-García, J.P.; Gusi, N.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Psychophysiological Response of Military Pilots in Different Combat Flight Maneuvers in a Flight Simulator. Physiol. Behav. 2021, 238, 113483. [Google Scholar] [CrossRef] [PubMed]
- Honkanen, T.; Mäntysaari, M.; Leino, T.; Avela, J.; Kerttula, L.; Haapamäki, V.; Kyröläinen, H. Cross-Sectional Area of the Paraspinal Muscles and Its Association with Muscle Strength among Fighter Pilots: A 5-Year Follow-Up. BMC Musculoskelet. Disord. 2019, 20, 170. [Google Scholar] [CrossRef] [PubMed]
- Rintala, H. Determining Fighter Pilot’s G Load: Pilot’s Fatigue Index. J. Sci. Med. Sport 2017, 20, S38. [Google Scholar] [CrossRef]
- Wagstaff, A.S.; Jahr, K.I.; Rodskier, S. +Gz-Induced Spinal Symptoms in Fighter Pilots: Operational and Individual Associated Factors. Aviat. Space Environ. Med. 2012, 83, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-García, J.P.; Clemente-Suárez, V.J.; Marazuela-Martínez, M.Á.; Tornero-Aguilera, J.F.; Villafaina, S. Impact of Real and Simulated Flights on Psychophysiological Response of Military Pilots. Int. J. Environ. Res. Public Health 2021, 18, 787. [Google Scholar] [CrossRef]
- Veerle De Loose, P.T.; Burnotte, F.; Damien Van Tiggelen, P.T.; Van den Oord MSc, M.; Pieter van Amerongen, M.D. Review of the Belgian and the Netherlands National Work Programme on the Long Term Effects Of Sustained High G on the Cervical Spine. Age 2008, 30, 30–39. [Google Scholar]
- Sánchez, Á.B.; Herradón, V.M.L.; Saiz, J.F.G.; Laguna, T.T.; Suárez, V.J.C. Psychophysiological Response of Fighter Aircraft Pilots in Normobaric Hypoxia Training. Arch. Med. Deporte Rev. Fed. Española Med. Deporte Confed. Iberoam. Med. Deporte 2018, 35, 99–102. [Google Scholar]
- Lijewski, M.; Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Stachoń, A. Asymmetry of Muscle Mass Distribution and Grip Strength in Professional Handball Players. Int. J. Environ. Res. Public Health 2021, 18, 1913. [Google Scholar] [CrossRef]
- Belinchon-deMiguel, P.; Clemente-Suárez, V.J. Psychophysiological, Body Composition, Biomechanical and Autonomic Modulation Analysis Procedures in an Ultraendurance Mountain Race. J. Med. Syst. 2018, 42, 32. [Google Scholar] [CrossRef]
- Ramos-Campo, D.J.; Martínez Sánchez, F.; García, P.E.; Rubio Arias, J.Á.; Cerezal, A.B.; Clemente-Suarez, V.J.; Jiménez Díaz, J.F. Body Composition Features in Different Playing Position of Professional Team Indoor Players: Basketball, Handball and Futsal. Int. J. Morphol. 2014, 32, 1316–1324. [Google Scholar] [CrossRef] [Green Version]
- Clemente-Suarez, V.J.; Nikolaidis, P.T. Use of Bioimpedianciometer as Predictor of Mountain Marathon Performance. J. Med. Syst. 2017, 41, 73. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Body Composition Differences in Military Pilots and Aircrew. Aerosp. Med. Hum. Perform. 2020, 91, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; French, C.R.; Martin, G.R.; Younghusband, B.; Green, R.C.; Xie, Y.; Mathews, M.; Barron, J.R.; Fitzpatrick, D.G.; Gulliver, W. Comparison of Multifrequency Bioelectrical Impedance Analysis with Dual-Energy X-Ray Absorptiometry for Assessment of Percentage Body Fat in a Large, Healthy Population. Am. J. Clin. Nutr. 2005, 81, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.-M.; Heshka, S.; Pierson, R.N., Jr.; Heymsfield, S.B. Systematic Organization of Body-Composition Methodology: An Overview with Emphasis on Component-Based Methods. Am. J. Clin. Nutr. 1995, 61, 457–465. [Google Scholar] [CrossRef]
- Gibson, A.L.; Holmes, J.C.; Desautels, R.L.; Edmonds, L.B.; Nuudi, L. Ability of New Octapolar Bioimpedance Spectroscopy Analyzers to Predict 4-Component–Model Percentage Body Fat in Hispanic, Black, and White Adults. Am. J. Clin. Nutr. 2008, 87, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Aandstad, A.; Holtberget, K.; Hageberg, R.; Holme, I.; Anderssen, S.A. Validity and Reliability of Bioelectrical Impedance Analysis and Skinfold Thickness in Predicting Body Fat in Military Personnel. Mil. Med. 2014, 179, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Clemente-Suárez, V.J.; Robles-Pérez, J.J. Mechanical, Physical, and Physiological Analysis of Symmetrical and Asymmetrical Combat. J. Strength Cond. Res. 2013, 27, 2420–2426. [Google Scholar] [CrossRef]
- Díaz, J.F.J.; Campo, D.J.R.; Arias, J.A.R.; Sánchez, F.M.; García, P.E.; Clemente-Suárez, V.J.; Vicente, J.G.V. Body Composition and Cardiorespiratory Response of Male and Female Soldiers during a Simulated Attack Maneuver. Open Sports Sci. J. 2014, 7, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Clemente-Suarez, V.J.; Robles-Pérez, J.J. Respuesta Orgánica En Una Simulación de Combate. Sanid. Mil. 2012, 68, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Hormeño-Holgado, A.J.; Clemente-Suárez, V.J. Effect of Different Combat Jet Manoeuvres in the Psychophysiological Response of Professional Pilots. Physiol. Behav. 2019, 208, 112559. [Google Scholar] [CrossRef]
- Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological Response to Disorientation Training in Different Aircraft Pilots. Appl. Psychophysiol. Biofeedback 2020, 45, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Var, S.M.; Marangoz, I. Leg Volume and Mass Scales of Elite Male and Female Athletes in Some Olympic Sports. World J. Educ. 2018, 8, 54–58. [Google Scholar]
- Jackman, R.W.; Kandarian, S.C. The Molecular Basis of Skeletal Muscle Atrophy. Am. J. Physiol.-Cell Physiol. 2004, 287, C834–C843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaldo, P.; Sandri, M. Cellular and Molecular Mechanisms of Muscle Atrophy. Dis. Models Mech. 2013, 6, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.K.; Kavazis, A.N.; McClung, J.M. Oxidative Stress and Disuse Muscle Atrophy. J. Appl. Physiol. 2007, 102, 2389–2397. [Google Scholar] [CrossRef]
- Promsri, A.; Longo, A.; Haid, T.; Doix, A.-C.M.; Federolf, P. Leg Dominance as a Risk Factor for Lower-Limb Injuries in Downhill Skiers—A Pilot Study into Possible Mechanisms. Int. J. Environ. Res. Public Health 2019, 16, 3399. [Google Scholar] [CrossRef] [Green Version]
- Suárez, V.C.; Campo, D.R.; González-Ravé, J.M. Modifications to Body Composition after Running an Alpine Marathon. Int. SportMed J. 2011, 12, 133–140. [Google Scholar]
- Rynkiewicz, M.; Rynkiewicz, T.; Żurek, P.; Ziemann, E.; Szymanik, R. Asymmetry of Muscle Mass Distribution in Tennis Players. Trends Sport Sci. 2013, 20, 47–53. [Google Scholar]
- Poliszczuk, T.; Mańkowska, M.; Poliszczuk, D.; Wiśniewski, A. Symmetry and Asymmetry of Reaction Time and Body Tissue Composition of Upper Limbs in Young Female Basketball Players. Pediatr. Endocrinol. Diabetes Metab. 2013, 19, 132–136. [Google Scholar]
- Mala, L.; Maly, T.; Cabell, L.; Hank, M.; Bujnovsky, D.; Zahalka, F. Anthropometric, Body Composition, and Morphological Lower Limb Asymmetries in Elite Soccer Players: A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 1140. [Google Scholar] [CrossRef] [Green Version]
- Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological Response in Night and Instrument Helicopter Flights. Ergonomics 2020, 63, 399–406. [Google Scholar] [CrossRef] [PubMed]
Pilots | Control Group | Group and Arm Effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Right | Left | Right | Left | ||||||||
M | SD | M | SD | M | SD | M | SD | F | p | η2 | |
FFM (kg) | 3.52 * | 0.47 | 3.47 * | 0.47 | 3.19 * | 0.79 | 3.16 * | 0.79 | 0.018 | 0.894 | 0.000 |
BFM (kg) | 0.47 * | 0.45 | 0.49 * | 0.45 | 0.66 * | 0.52 | 0.68 * | 0.53 | 0.000 | 0.994 | 0.000 |
TEM (kg) | 4.00 | 0.72 | 3.97 | 0.71 | 3.85 | 0.80 | 3.84 | 0.79 | 0.013 | 0.911 | 0.000 |
TBW (l) | 2.73 | 0.37 | 2.70 | 0.36 | 2.47 * | 0.62 | 2.45 * | 0.61 | 0.021 | 0.886 | 0.000 |
ECW (l) | 1.02 | 0.14 | 1.00 | 0.13 | 0.92 | 0.23 | 0.91 | 0.22 | 0.043 | 0.836 | 0.000 |
ICW (l) | 1.71 | 0.23 | 1.69 | 0.22 | 1.55 | 0.38 | 1.53 | 0.38 | 0.011 | 0.916 | 0.000 |
Pilots | Control Group | Group and Side Effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Right | Left | Right | Left | ||||||||
M | SD | M | SD | M | SD | M | SD | F | p | η2 | |
FFM (kg) | 9.92 * | 1.05 | 9.84 * | 1.04 | 8.99 * | 1.69 | 8.95 * | 1.65 | 0.025 | 0.874 | 0.000 |
BFM (kg) | 1.62 * | 0.65 | 1.60 * | 0.63 | 1.91 * | 0.90 | 1.90 * | 0.90 | 0.000 | 0.993 | 0.000 |
TEM (kg) | 11.5 * | 1.33 | 11.4 * | 1.31 | 10.9 * | 1.67 | 10.8 * | 1.62 | 0.019 | 0.890 | 0.000 |
TBW (l) | 7.69 * | 0.81 | 7.64 * | 0.81 | 6.97 * | 1.30 | 6.95 * | 1.28 | 0.023 | 0.880 | 0.000 |
ECW (l) | 2.83 * | 0.31 | 2.83 * | 0.31 | 2.57 * | 0.47 | 2.58 * | 0.47 | 0.013 | 0.908 | 0.000 |
ICW (l) | 4.86 | 0.51 | 4.81 | 0.50 | 4.40 | 0.83 | 4.36 | 0.81 | 0.029 | 0.865 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curiel-Regueros, A.; Ardigò, L.P.; Bustamante-Sánchez, Á.; Tornero-Aguilera, J.F.; Fuentes-García, J.P.; Clemente-Suárez, V.J. Body Composition Symmetry in Aircraft Pilots. Symmetry 2022, 14, 356. https://doi.org/10.3390/sym14020356
Curiel-Regueros A, Ardigò LP, Bustamante-Sánchez Á, Tornero-Aguilera JF, Fuentes-García JP, Clemente-Suárez VJ. Body Composition Symmetry in Aircraft Pilots. Symmetry. 2022; 14(2):356. https://doi.org/10.3390/sym14020356
Chicago/Turabian StyleCuriel-Regueros, Agustín, Luca Paolo Ardigò, Álvaro Bustamante-Sánchez, José Francisco Tornero-Aguilera, Juan Pedro Fuentes-García, and Vicente Javier Clemente-Suárez. 2022. "Body Composition Symmetry in Aircraft Pilots" Symmetry 14, no. 2: 356. https://doi.org/10.3390/sym14020356
APA StyleCuriel-Regueros, A., Ardigò, L. P., Bustamante-Sánchez, Á., Tornero-Aguilera, J. F., Fuentes-García, J. P., & Clemente-Suárez, V. J. (2022). Body Composition Symmetry in Aircraft Pilots. Symmetry, 14(2), 356. https://doi.org/10.3390/sym14020356