Efficient Splitting Methods for Solving Tensor Absolute Value Equation
Abstract
:1. Introduction
2. Preliminaries
3. Reformulation and Tensor Splitting Iteration
Algorithm 1 Tensor AOR splitting iterative method (TAOR) for TAVE |
Input vector b, tensor . Given a precision , parameters and initial vector , . Set . If stop; otherwise, go to Step 3. Compute iterative schemes
Set , return to Step 2. |
4. Numerical Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cipolla, S.; Redivo-Zaglia, M.; Tudisco, F. Extrapolation methods for fixed-point multilinear PageRank computations. Numer. Linear Algebra Appl. 2020, 27, e2280. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Ling, C.; Qi, L.; Zhou, G. A Globally and Quadratically Convergent Algorithm for Solving Multilinear Systems with M-tensors. J. Sci. Comput. 2018, 76, 1718–1741. [Google Scholar] [CrossRef]
- Lv, C.Q.; Ma, C.F. A Levenberg-Marquardt method for solving semi-symmetric tensor equations. J. Comput. Appl. Math. 2018, 332, 13–25. [Google Scholar] [CrossRef]
- Wang, X.; Che, M.L.; Wei, Y.M. Neural networks based approach solving multi-linear systems with M-tensors. Neurocomputing 2019, 351, 33–42. [Google Scholar] [CrossRef]
- Xie, Z.J.; Jin, X.Q.; Wei, Y.M. Tensor ethods for Solving Symmetric M-tensor Systems. J. Sci. Comput. 2018, 74, 412–425. [Google Scholar] [CrossRef]
- Xie, Z.J.; Jin, X.Q.; Wei, Y.M. A fast algorithm for solving circulant tensor systems. Linear Multilinear Algebra 2017, 65, 1894–1904. [Google Scholar] [CrossRef]
- El Ichi, A.; Jbilou, K.; Sadaka, R. Tensor Global Extrapolation Methods Using the n-Mode and the Einstein Products. Mathematics 2020, 8, 1298. [Google Scholar] [CrossRef]
- Kolda, T.G. Multilinear Operators for Higher-Order Decompositions; Technical Report SAND2006-2081; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2006. [Google Scholar]
- Liu, D.D.; Li, W.; Vong, S.W. Relaxation methods for solving the tensor equation arising from the higher-order Markov chains. Numer. Linear Algebra Appl. 2019, 25, e2260. [Google Scholar] [CrossRef]
- Heyouni, M.; Saberi-Movahed, F.; Tajaddini, A. A tensor format for the generalized Hessenberg method for solving Sylvester tensor equations. J. Comput. Appl. Math. 2020, 377, 112878. [Google Scholar] [CrossRef]
- Reichel, L.; Ugwu, U.O. Tensor Arnoldi-Tikhonov and GMRES-Type Methods for Ill-Posed Problems with a t-Product Structure. J. Sci. Comput. 2022, 90, 1–39. [Google Scholar] [CrossRef]
- Saberi-Movahed, F.; Tajaddini, A.; Heyouni, M.; Elbouyahyaoui, L. Some iterative approaches for Sylvester tensor equations, Part I: A tensor format of truncated Loose Simpler GMRES. Appl. Numer. Math. 2022, 172, 428–445. [Google Scholar] [CrossRef]
- Song, Y.S.; Qi, L.Q. Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J. Matrix Anal. Appl. 2013, 34, 1581–1595. [Google Scholar] [CrossRef]
- Xie, Y.J.; Ke, Y.F. Neural network approaches based on new NCP-functions for solving tensor complementarity problem. J. Appl. Math. Comput. 2021, 4, 1–21. [Google Scholar] [CrossRef]
- Zhang, L.P.; Qi, L.Q.; Zhou, G.L. M-tensors and some applications. SIAM J. Matrix Anal. Appl. 2014, 35, 437–452. [Google Scholar] [CrossRef]
- Song, Y.S.; Qi, L.Q. Properties of some classes of structured tensors. J. Optim. Theory Appl. 2015, 165, 854–873. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.F.; Ma, C.F. SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 2017, 311, 195–202. [Google Scholar] [CrossRef]
- Mangasarian, O.L.; Meyer, R.R. Absolute value equations. Linear Algebra Appl. 2006, 419, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Che, M.L.; Qi, L.Q.; Wei, Y.M. Positive definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 2016, 168, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Qi, L. A semismooth Newton method for tensor eigenvalue complementarity problem. Comput. Optim. Appl. 2016, 65, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.Y.; Wei, Y.M. Solving multilinear systems with M-tensors. J. Sci. Comput. 2016, 68, 689–715. [Google Scholar] [CrossRef]
- Ding, W.Y.; Wei, Y.M. Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 2015, 36, 1073–1099. [Google Scholar] [CrossRef]
- Han, L.X. A homotopy method for solving multilinear systems with M-tensors. Appl. Math. Lett. 2017, 69, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.D.; Li, W.; Vong, S.W. The tensor splitting with application to solve multi-linear systems. J. Comput. Appl. Math. 2018, 330, 75–94. [Google Scholar] [CrossRef]
- Li, W.; Liu, D.D.; Vong, S.W. Comparison results for splitting iterations for solving multi-linear systems. Appl. Numer. Math. 2018, 134, 105–121. [Google Scholar] [CrossRef]
- Li, W.; Ng, M.K. On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 2014, 62, 362–385. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Zhang, L.; Chen, C.; Qi, L. Tensor absolute value equations. Sci. China Math. 2018, 61, 1695–1710. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.; Yan, W.; He, H.; Qi, L. Further study on tensor absolute value equations. Sci. China Math. 2019, 63, 2137–2156. [Google Scholar] [CrossRef] [Green Version]
- Matveev, S.A.; Zheltkov, D.A.; Tyrtyshnikov, E.E.; Smirnov, A.P. Tensor train versus Monte Carlo for the multicomponent Smoluchowski coagulation equation. J. Comput. Phys. 2016, 316, 164–179. [Google Scholar] [CrossRef]
- Smirnov, A.P.; Matveev, S.A.; Zheltkov, D.A.; Tyrtyshnikov, E.E. Fast and accurate finite-difference method solving multicomponent Smoluchowski coagulation equation with source and sink terms. Procedia Comput. Sci. 2016, 80, 2141–2146. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Li, J. Solving tensor absolute value equation. Appl. Numer. Math. 2021, 170, 255–268. [Google Scholar] [CrossRef]
- Zheltkov, D.; Tyrtyshnikov, E. Global optimization based on TT-decomposition. Russ. J. Numer. Anal. Math. Model. 2020, 35, 247–261. [Google Scholar] [CrossRef]
- Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S.I. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Pearson, K. Essentially positive tensors. Int. J. Algebra 2010, 4, 421–427. [Google Scholar]
- Qi, L.Q. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef] [Green Version]
- Che, M.L.; Qi, L.Q.; Wei, Y.M. M-tensors and nonsingular M-tensors. Linear Algebra Appl. 2013, 439, 3264–3278. [Google Scholar]
- Li, D.H.; Xie, S.; Xu, R.H. Splitting methods for tensor equations. Numer. Linear Algebra Appl. 2017, 24, 5e2102. [Google Scholar] [CrossRef]
- Qi, L.Q.; Luo, Z. Tensor Analysis: Spectral Theory and Special Tensors; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2017. [Google Scholar]
- Kohno, T.; Kotakemori, H.; Niki, H.; Usui, M. Improving the modified Gauss-Seidel method for Z-matrices. Linear Algebra Appl. 1997, 267, 113–123. [Google Scholar] [CrossRef]
Case | 1 | 2 | 3 | |
---|---|---|---|---|
It | 18 | 6 | 5 | |
TAOR, , | CPU | |||
RES | ||||
It | 15 | 5 | 5 | |
TAOR, , | CPU | |||
RES | ||||
It | 20 | 6 | 5 | |
TSOR, , | CPU | |||
RES | ||||
It | 34 | 25 | 28 | |
TILM | CPU | |||
RES |
Case | 1 | 2 | 3 | |
---|---|---|---|---|
It | 10 | 4 | 6 | |
TAOR, , | CPU | |||
RES | ||||
It | 10 | 10 | 9 | |
TAOR, , | CPU | |||
RES | ||||
It | 10 | 5 | 5 | |
TSOR, , | CPU | |||
RES | ||||
It | 45 | 43 | 35 | |
TILM | CPU | |||
RES |
Case | 1 | 2 | 3 | |
---|---|---|---|---|
It | 13 | 6 | 8 | |
TAOR, , | CPU | |||
RES | ||||
It | 13 | 7 | 9 | |
TSOR, , | CPU | |||
RES | ||||
It | 48 | 46 | 39 | |
TILM | CPU | |||
RES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Xie, Y.; Yao, J. Efficient Splitting Methods for Solving Tensor Absolute Value Equation. Symmetry 2022, 14, 387. https://doi.org/10.3390/sym14020387
Ning J, Xie Y, Yao J. Efficient Splitting Methods for Solving Tensor Absolute Value Equation. Symmetry. 2022; 14(2):387. https://doi.org/10.3390/sym14020387
Chicago/Turabian StyleNing, Jing, Yajun Xie, and Jie Yao. 2022. "Efficient Splitting Methods for Solving Tensor Absolute Value Equation" Symmetry 14, no. 2: 387. https://doi.org/10.3390/sym14020387
APA StyleNing, J., Xie, Y., & Yao, J. (2022). Efficient Splitting Methods for Solving Tensor Absolute Value Equation. Symmetry, 14(2), 387. https://doi.org/10.3390/sym14020387