Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation
Abstract
:1. Introduction
2. Analytical Results
2.1. Traveling Waves
2.2. Bright Soliton
3. Numerical Approximations
3.1. Spectral Fourier Methods
3.2. Dynamic Mode Decomposition
- Create two matrices from data set given in (31):
- Compute the full rank SVD of
- Based on the selected rank , construct the reduced matrices , , and
- Construct the dynamic operator
- Compute eigenvalues and eigenvectors of
- Construct the modes (eigenvectors) of the original matrix
- Construct time series approximation of the original dynamical system:where are the eigenvalues of L and are the initial conditions.
3.3. Koopman Approximation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 79, 361–376. [Google Scholar] [CrossRef]
- Ali, F.; Jhangeer, A.; Muddasser, M.; Almusawa, H. Solitonic, quasi-periodic, super nonlinear and chaotic behaviors of a dispersive extended nonlinear Schrödinger equation in an optical fiber. Results Phys. 2021, 31, 104921. [Google Scholar] [CrossRef]
- Bandelow, U.; Akhmediev, N. Persistence of rogue waves in extended nonlinear Schrödinger equations: Integrable Sasa-Satsuma case. Phys. Lett. 2012, 376, 1558–1561. [Google Scholar] [CrossRef]
- Gromov, E.M.; Malomed, B.A. Damped solitons in an extended nonlinear Schrödinger equation with a spatial stimulated Raman scattering and decreasing dispersion. Opt. Commun. 2014, 320, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Gromov, E.M.; Malomed, B.A. Solitons in a forced nonlinear Schrödinger equation with the pseudo-Raman effect. Phys. Rev. E 2015, 92, 062926. [Google Scholar] [CrossRef] [Green Version]
- Vega-Guzmán, J.M.; Biswas, A.; Mahmood, M.F.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Optical solitons with polarization mode dispersion for Lakshmanan-Porsezian-Daniel model by the method of undetermined coefficients. Optik 2018, 171, 114–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Miao, X.; Chen, Y. Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Phys. Lett. A 2011, 375, 1275–1280. [Google Scholar] [CrossRef]
- Gagnon, L.; Winternitz, P. Lie symmetries of a generalized nonlinear Schrödinger equation: I. The symmetry group and its subgroups. J. Phys. Math. Gen. 1988, 21, 1493. [Google Scholar] [CrossRef]
- Panoiu, N.C.; Mihalache, D.; Mazilu, D.; Crasovan, L.C.; Mel’nikov, I.V.; Lederer, F. Soliton dynamics of symmetry-endowed two-soliton solutions of the nonlinear Schrödinger equation. Chaos 2000, 10, 625–640. [Google Scholar] [CrossRef] [Green Version]
- Popovych, R.O.; Kunzinger, M.; Eshraghi, H. Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math. 2010, 109, 315–359. [Google Scholar] [CrossRef] [Green Version]
- Peng, L. Symmetries and reductions of integrable nonlocal partial differential equations. Symmetry 2019, 11, 884. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Vega-Guzman, J.; Bansal, A.; Kara, A.H.; Alzahrani, A.K.; Zhou, Q.; Belic, M.R. Optical dromions, domain walls and conservation laws with Kundu-Mukherjee-Naskar equation via traveling waves and Lie symmetry. Results Phys. 2020, 16, 102850. [Google Scholar] [CrossRef]
- Huang, Y.; Jing, H.; Li, M.; Ye, Z.; Yao, Y. On Solutions of an Extended Nonlocal Nonlinear Schrödinger Equation in Plasmas. Mathematics 2020, 8, 1099. [Google Scholar] [CrossRef]
- Myrzakul, A.; Nugmanova, G.; Serikbayev, N.; Myrzakulov, R. Surfaces and Curves Induced by Nonlinear Schrödinger-Type Equations and Their Spin Systems. Symmetry 2021, 13, 1827. [Google Scholar] [CrossRef]
- Boardman, A.D.; Alberucci, A.; Assanto, G.; Grimalsky, V.V.; Kibler, B.; McNiff, J.; Nefedov, I.S.; Rapoport, Y.G.; Valagiannopoulos, C.A. Waves in hyperbolic and double negative metamaterials including rogues and solitons. Nanotechnology 2017, 28, 444001. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B.O. Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopman, B.O.; Neumann, J.v. Dynamical systems of continuous spectra. Proc. Natl. Acad. Sci. USA 1932, 18, 255–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezić, I.; Banaszuk, A. Comparison of systems with complex behavior. Phys. D Nonlinear Phenom. 2004, 197, 101–133. [Google Scholar] [CrossRef]
- Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 2005, 41, 309–325. [Google Scholar] [CrossRef]
- Rowley, S.W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Spectral analysis of nonlinear flows. J. Fluid Mech. 2009, 641, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.J.; Li, L.; Pust, O. Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 2011, 25, 249–259. [Google Scholar] [CrossRef]
- Noack, B.R.; Afanasiev, K.; Morzynski, M.; Tadmor, G.; Thiele, F. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 2003, 497, 335–363. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Bruntin, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef] [Green Version]
- Alla, A.; Kutz, J.N. Nonlinear model order reduction via dynamic mode decomposition. Siam J. Sci. Comput. 2017, 39, B778–B796. [Google Scholar] [CrossRef]
- Crabb, M.; Akmediev, N. Doubly periodic solutions of the class-I infinitely extended nonlinear Schrödinger equation. Phys. Rev. E 2019, 99, 052217. [Google Scholar] [CrossRef] [Green Version]
- Kutz, J.N.; Proctor, J.L.; Brunton, S.L. Koopman theory for partial differential equations. arXiv 2016, arXiv:1607.07076. [Google Scholar]
- Arbabi, H.; Mezic, I. Ergodic Theory, Dynamic Mode Decomposition and Computation of Spectral Properties of the Koopman Operator. arXiv 2017, arXiv:1611.06664v6. [Google Scholar] [CrossRef]
- Kutz, J.N.; Proctor, J.L.; Brunton, S.L. Applied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems. Complexity 2018, 2018, 16. [Google Scholar]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kaiser, E.; Kutz, J.N. Chaos as an intermittently forced linear system. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Nakao, H.; Mezić, I. Spectral analysis of the Koopman operator for partial differential equations. Chao Interdiscip. J. Nonlinear Sci. 2020, 30, 113131. [Google Scholar] [CrossRef]
- Ekici, M.; Mirzazadeh, M.; Sonmezoglu, A.; Ullah, M.Z.; Asma, M.; Zhou, Q.; Moshokoa, S.P.; Biswas, A.; Belic, M. Optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik 2017, 135, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Islam, W.; Younis, M.; Rizvi, S.T.R. Optical Solitons with time fractional nonlinear Schrödinger equation and competing weakly nonlocal nonlinearity. Optik 2017, 130, 562–567. [Google Scholar] [CrossRef]
- Salova, A.; Emenheiser, J.; Rupe, A.; Crutchfield, J.P.; D’Souza, R.M. Koopman operator and its approximations for systems with symmetries. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 093128. [Google Scholar] [CrossRef]
- Beléndez, A.; Beléndez, T.; Matínez, F.J.; Pascual, C.; Alvarez, M.L.; Arribas, E. Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities. Nonlinear Dyn. 2016, 86, 1687–1700. [Google Scholar] [CrossRef] [Green Version]
- Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2018. [Google Scholar]
- Gao, Z.; Lin, Y.; Sun, X.; Zeng, X. A reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest-neighbors regression. J. Comput. Phys. 2021, 452, 110907. [Google Scholar] [CrossRef]
- Kawahara, Y. Dynamic mode decomposition with reproducing kernels for Koopman spectral analysis. Adv. Neural Inf. Process. Syst. 2016, 29, 911–919. [Google Scholar]
- Tang, H.Z. Koopman Reduced Order Control for Three Body Problem. Mod. Mech. Eng. 2019, 9, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Kevrekidis, I.; Rowley, C.W.; Williams, M. A kernel-based method for data-driven Koopman spectral analysis. J. Comput. Dyn. 2016, 2, 247–265. [Google Scholar]
- Kaiser, E.; Kutz, J.N.; Brunton, S.L. Data-driven discovery of Koopman eigenfunctions for control. Mach. Learn. Sci. Technol. 2021, 2, 035023. [Google Scholar] [CrossRef]
- Mendible, A.; Koch, J.; Lange, H.; Brunton, S.L.; Kutz, J.N. Data-driven modeling of rotating detonation waves. Phys. Rev. Fluids 2021, 6, 050507. [Google Scholar] [CrossRef]
- Klus, S.; Nüske, F.; Peitz, S.; Niemann, J.H.; Clementi, C.; Schütte, C. Data-driven approximation of the Koopman generator: Model reduction, system identification, and control. Physica D Nonlinear Phenom. 2020, 406, 132416. [Google Scholar] [CrossRef] [Green Version]
- Klus, S.; Nske, F.; Hamzi, B. Kernel-based approximation of the Koopman generator and Schrödinger operator. Entropy 2020, 22, 722. [Google Scholar] [CrossRef] [PubMed]
- Balabane, M.; Méndez, M.A.; Najem, S. Koopman operator for Burgers’s equation. Phys. Rev. Fluids 2021, 6, 064401. [Google Scholar] [CrossRef]
- Mesbahi, A.; Bu, J.; Mesbahi, M. Nonlinear observability via Koopman analysis: Characterizing the role of symmetry. Automatica 2021, 124, 109353. [Google Scholar] [CrossRef]
- Phillips, A. Extending Nonlinear Schrödinger Equation to Include Spatiotemporal Dispersion. Master’s Thesis, Lamar University, Beaumont, TX, USA, May 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klauss, R.; Phillips, A.; Vega-Guzmán, J.M. Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation. Symmetry 2022, 14, 465. https://doi.org/10.3390/sym14030465
Klauss R, Phillips A, Vega-Guzmán JM. Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation. Symmetry. 2022; 14(3):465. https://doi.org/10.3390/sym14030465
Chicago/Turabian StyleKlauss, Rachel, Aaron Phillips, and José M. Vega-Guzmán. 2022. "Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation" Symmetry 14, no. 3: 465. https://doi.org/10.3390/sym14030465
APA StyleKlauss, R., Phillips, A., & Vega-Guzmán, J. M. (2022). Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation. Symmetry, 14(3), 465. https://doi.org/10.3390/sym14030465