A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements
Abstract
:1. Introduction
2. Prior Measurements in Search of Oscillation
3. Measuring the Precession Frequency of the Neutron
3.1. Using Co-Magnetometer: Measuring Ratio of Precession Frequencies
3.2. Systematic Corrections to
3.3. Crossing Point Analysis
4. Constraints on Oscillation
5. Discussion of the Results
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, T.D.; Yang, C.-N.; Lee, T.D.; Yang, C.-N. Question of Parity Conservation in Weak Interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef]
- Kobzarev, I.Y.; Okun, L.B.; Pomeranchuk, I.Y. On the possibility of experimental observation of mirror particles. Sov. J. Nucl. Phys. 1966, 3, 837. [Google Scholar]
- Pavšič, M. External inversion, internal inversion, and reflection invariance. Int. J. Theor. Phys. 1974, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Foot, R.; Lew, H.; Volkas, R.R. A model with fundamental improper spacetime symmetries. Phys. Lett. B 1991, 272, 67–70. [Google Scholar] [CrossRef]
- Foot, R.; Lew, H.; Volkas, R.R. Possible Consequences of Parity Conservation. Mod. Phys. Lett. A 1992, 07, 2567–2574. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Beskin, G.M.; Bochkarev, N.G.; Pustilnik, L.A.; Pustilnik, S.A. Observational Physics of the Mirror World. Soviet Astronomy 1991, 35, 21. [Google Scholar]
- Hodges, H.M. Mirror baryons as the dark matter. Phys. Rev. D 1993, 47, 456–459. [Google Scholar] [CrossRef]
- Foot, R.; Volkas, R.R. Was ordinary matter synthesized from mirror matter? An attempt to explain why ΩB ≈ 0.2Ωdark. Phys. Rev. D 2003, 68, 021304. [Google Scholar] [CrossRef] [Green Version]
- Foot, R. Experimental Implications of Mirror Matter-Type Dark Matter. Int. J. Mod. Phys. A 2004, 19, 3807–3818. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Ciarcelluti, P.; Comelli, D.; Villante, F.L. Structure Formation with Mirror Dark Matter: CMB and LSS. Int. J. Mod. Phys. D 2005, 14, 107. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Ciarcelluti, P.; Cassisi, S.; Pietrinferni, A. Evolutionary and structural properties of mirror star MACHOs. Astropart. Phys. 2006, 24, 495. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Marriage between the Baryonic and Dark Matters. AIP Conf. Proc. 2006, 878, 195. [Google Scholar] [CrossRef] [Green Version]
- Foot, R. Comprehensive analysis of the dark matter direct detection experiments in the mirror dark matter framework. Phys. Rev. D 2010, 82, 095001. [Google Scholar] [CrossRef] [Green Version]
- Foot, R. Mirror dark matter interpretations of the DAMA, CoGeNT, and CRESST-II data. Phys. Rev. D 2012, 86, 023524. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Berezhiani, Z.; Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Incicchitti, A. DAMA annual modulation effect and asymmetric mirror matter. Euro. Phys. J. C 2015, 75, 400. [Google Scholar] [CrossRef] [Green Version]
- Cerulli, R.; Villar, P.; Cappella, F.; Bernabei, R.; Belli, P.; Incicchitti, A.; Addazi, A.; Berezhiani, Z. DAMA annual modulation and mirror Dark Matter. Euro. Phys. J. C 2017, 77, 83. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Unified Picture of the Particle and Sparticle Masses in SUSY GUT. Phys. Lett. B 1998, 417, 287. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.G.; Kaufmann, L.; Panci, P.; Rossi, N.; Rubbia, A.; Sakharov, A.S. Strongly interacting mirror dark matter, CERN Report #: CERN-PH-TH-2008-108. 2008. Available online: https://cds.cern.ch/record/1162182 (accessed on 29 November 2021).
- Berezinsky, V.; Narayan, M.; Vissani, F. Mirror model for sterile neutrinos. Nucl. Phys. B 2003, 658, 254–280. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Mohapatra, R.N. Reconciling present neutrino puzzles: Sterile neutrinos as mirror neutrinos. Phys. Rev. D 1995, 52, 6607. [Google Scholar] [CrossRef] [Green Version]
- Foot, R.; Volkas, R.R. Neutrino physics and the mirror world: How exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly, and the LSND experiment. Phys. Rev. D 1995, 52, 6595. [Google Scholar] [CrossRef] [Green Version]
- Zel’dovich, Y.B.; Khlopov, M.Y. The neutrino mass in elementary-particle physics and in big bang cosmology. Sov. Phys. Usp. 1981, 24, 755–774. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Berezhiani, Z.; Senjanovic, G. Planck-scale physics and neutrino masses. Phys. Rev. Lett. 1992, 69, 3013–3016. [Google Scholar] [CrossRef] [Green Version]
- Silagadze, Z.K. Neutrino mass and mirror universe. Phys. Atom. Nucl. 1997, 60, 272. [Google Scholar]
- Holdom, B. Two U(1)’S and ϵ charge shifts. Phys. Lett. B 1986, 166, 196. [Google Scholar] [CrossRef]
- Glashow, S.L. Positronium versus the mirror universe. Phys. Lett. B 1986, 167, 35. [Google Scholar] [CrossRef]
- Foot, R.; Ignatiev, A.Y.; Volkas, R.R. Physics of mirror photons. Phys. Lett. B 2001, 503, 355. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Lepidi, A. Cosmological bounds on the millicharges of mirror particles. Phys. Lett. B 2009, 681, 276. [Google Scholar] [CrossRef] [Green Version]
- Gninenko, S.N. Limit on disappearance of orthopositronium in vacuum. Phys. Lett. B 1994, 326, 317. [Google Scholar] [CrossRef]
- Foot, R.; Gninenko, S.N. Can the mirror world explain the ortho-positronium lifetime puzzle? Phys. Lett. B 2000, 480, 171. [Google Scholar] [CrossRef] [Green Version]
- Gninenko, S.N. An Apparatus To Search For Mirror Dark Matter. Int. J. Mod. Phys. A 2004, 19, 3833. [Google Scholar] [CrossRef] [Green Version]
- Gninenko, S.N.; Krasnikov, N.V.; Matveev, V.A.; Rubbia, A. Some aspects of positronium physics. Phys. Part. Nucl. 2006, 37, 321. [Google Scholar] [CrossRef]
- Badertscher, A.; Crivelli, P.; Fetscher, W.; Gendotti, U.; Gninenko, S.N.; Postoev, V.; Rubbia, A.; Samoylenko, V.; Sillou, D. Improved limit on invisible decays of positronium. Phys. Rev. D 2007, 75, 032004. [Google Scholar] [CrossRef] [Green Version]
- Crivelli, P.; Belov, A.; Gendotti, U.; Gninenko, S.; Rubbia, A. Positronium portal into hidden sector: A new experiment to search for mirror dark matter. J. Instrum. 2010, 5, P08001. [Google Scholar] [CrossRef] [Green Version]
- Vigo, C.; Gerchow, L.; Liszkay, L.; Rubbia, A.; Crivelli, P. First search for invisible decays of orthopositronium confined in a vacuum cavity. Phys. Rev. D 2018, 97, 092008. [Google Scholar] [CrossRef] [Green Version]
- Sakharov, A.D. Violation of CP-Invariance, C-Asymmetry, and Baryon Asymmetry of the Universe. JETP Lett. 1967, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Kuzmin, V.A. CP violation and baryon asymmetry of the universe. JETP Lett. 1970, 12, 335–337. [Google Scholar]
- Nishijima, K.; Saffouri, M.H. CP Invariance and the Shadow Universe. Phys. Rev. Lett. 1965, 14, 205. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Comelli, D.; Villante, F.L. The early mirror universe: Inflation, baryogenesis, nucleosynthesis and dark matter. Phys. Lett. B 2001, 503, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Bento, L.; Berezhiani, Z. Leptogenesis via Collisions: Leaking Lepton Number to the Hidden Sector. Phys. Rev. Lett. 2001, 87, 231304. [Google Scholar] [CrossRef] [Green Version]
- Bento, L.; Berezhiani, Z. Baryon asymmetry, dark matter and the hidden sector. Fortschr. Phys. 2002, 50, 489–495. [Google Scholar] [CrossRef]
- Berezhiani, Z. Neutron-antineutron oscillation and baryonic majoron: Low scale spontaneous baryon violation. Eur. Phys. J. C 2016, 76, 705. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Gazizov, A. Neutron oscillations to parallel world: Earlier end to the cosmic ray spectrum? Eur. Phys. J. C 2012, 72, 2111. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Bento, L. Fast neutron–mirror neutron oscillation and ultra high energy cosmic rays. Phys. Lett. B 2006, 635, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, R.N.; Nasri, S.; Nussinov, S. Some implications of neutron mirror neutron oscillation. Phys. Lett. B 2005, 627, 124. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Anti-Dark Matter: A Hidden Face of Mirror World. arXiv 2016, arXiv:1602.08599. [Google Scholar]
- Berezhiani, Z.; Biondi, R.; Mannarelli, M.; Tonelli, F. Neutron-mirror neutron mixing and neutron stars. Euro. Phys. J. C 2021, 81, 1036. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Marshak, R.E. Local B—L Symmetry of Electroweak Interactions, Majorana Neutrinos, and Neutron Oscillations. Phys. Rev. Lett. 1980, 44, 1316. [Google Scholar] [CrossRef]
- Baldo-Ceolin, M.; Benetti, P.; Bitter, T.; Bobisut, F.; Calligarich, E.; Dolfini, R.; Dubbers, D.; El-Muzeini, P.; Genoni, M.; Gibin, D.; et al. A new experimental limit on neutron-antineutron oscillations. Zeit. Für Physik C 1994, 63, 409. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.G., II; Snow, W.M.; Babu, K.; Banerjee, S.; Baxter, D.V.; Berezhiani, Z.; Bergevin, M.; Bhattacharya, S.; Brooijmans, G.; Castellanos, L.; et al. Neutron-antineutron oscillations: Theoretical status and experimental prospects. Phys. Rep. 2016, 612, 1. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Vainshtein, A. Neutron-Antineutron Oscillation as a Signal of CP Violation. arXiv 2015, arXiv:1506.05096. [Google Scholar]
- Addazi, A.; Anderson, K.; Ansell, S.; Babu, K.S.; Barrow, J.L.; Baxter, D.V.; Bentley, P.M.; Berezhiani, Z.; Bevilacqua, R.; Biondi, R.; et al. New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source. J. Phys. G 2021, 48, 070501. [Google Scholar] [CrossRef]
- Blinnikov, S.I.; Khlopov, M.Y. On Possible Effects of Mirror Particles. Sov. J. Nucl. Phys. 1982, 36, 472. [Google Scholar]
- Kolb, E.W.; Seckel, D.; Turner, M.S. The shadow world of superstring theories. Nature 1985, 314, 415. [Google Scholar] [CrossRef]
- Carlson, E.D.; Glashow, S.L. Nucleosynthesis versus the mirror universe. Phys. Lett. B 1987, 193, 168. [Google Scholar] [CrossRef]
- Ciarcelluti, P. Cosmology with Mirror Dark Matter I: Linear Evolution of Perturbations. Int. J. Mod. Phys. D 2005, 14, 187–221. [Google Scholar] [CrossRef] [Green Version]
- Ciarcelluti, P. Cosmology with Mirror Dark Matter II: Cosmic Microwave Background and Large Scale Structure. Int. J. Mod. Phys. D 2005, 14, 223–256. [Google Scholar] [CrossRef] [Green Version]
- Das, C.R.; Laperashvili, L.V.; Nielsen, H.B.; Tureanu, A. Baryogenesis in cosmological model with superstring-inspired E6 unification. Phys. Lett. B 2011, 696, 138. [Google Scholar] [CrossRef] [Green Version]
- Coc, A.; Uzan, J.-P.; Vangioni, E. Mirror matter can alleviate the cosmological lithium problem. Phys. Rev. D 2013, 87, 123530. [Google Scholar] [CrossRef] [Green Version]
- Coc, A.; Pospelov, M.; Uzan, J.-P.; Vangioni, E. Modified big bang nucleosynthesis with nonstandard neutron sources. Phys. Rev. D 2014, 90, 085018. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, R.N.; Teplitz, V.L. Structures in the Mirror Universe. Astrophysical J. 1997, 478, 29. [Google Scholar] [CrossRef]
- Foot, R. Have mirror stars been observed? Phys. Lett. B 1999, 452, 83. [Google Scholar] [CrossRef] [Green Version]
- Foot, R. Have mirror planets been observed? Phys. Lett. B 1999, 471, 191. [Google Scholar] [CrossRef] [Green Version]
- Ignatiev, A.Y.; Volkas, R.R. Mirror dark matter and large scale structure. Phys. Rev. D 2003, 68, 023518. [Google Scholar] [CrossRef] [Green Version]
- Foot, R.; Volkas, R.R. Spheroidal galactic halos and mirror dark matter. Phys. Rev. D 2004, 70, 123508. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Pilo, L.; Rossi, N. Mirror matter, mirror gravity and galactic rotational curves. Euro. Phys. J. C 2010, 70, 305. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Dolgov, A.D.; Mohapatra, R.N. Asymmetric inflationary reheating and the nature of mirror universe. Phys. Lett. B 1996, 375, 26. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Mirror World and its Cosmological consequences. Int. J. Mod. Phys. A 2004, 19, 3775–3806. [Google Scholar] [CrossRef]
- Das, C.R.; Laperashvili, L.V.; Nielsen, H.B.; Tureanu, A. Mirror world and superstring-inspired hidden sector of the Universe, dark matter and dark energy. Phys. Rev. D 2011, 84, 063510. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Redi, M. Phenomenology of 1032 dark sectors. Phys. Rev. D 2009, 80, 055001. [Google Scholar] [CrossRef] [Green Version]
- Foot, R. Mirror dark matter: Cosmology, galaxy structure and direct detection. Int. J. Mod. Phys. A 2014, 29, 1430013. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Through the Looking Glass: Alice’s Adventures in Mirror World. In From Fields to Strings: Circumnavigating Theoretical Physics; Shifman, M., Vainshtein, A., Wheater, J., Eds.; World Scientific: Singapore, 2005; Volume 3, pp. 2147–2195. [Google Scholar] [CrossRef]
- Okun, L.B. Mirror particles and mirror matter: 50 years of speculation and search. Phys. Usp. 2007, 50, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Unified picture of ordinary and dark matter genesis. Eur. Phys. J. Spec. Top. 2008, 163, 271–289. [Google Scholar] [CrossRef]
- Dubbers, D.; Schmidt, M.G. The neutron and its role in cosmology and particle physics. Rev. Mod. Phys. 2011, 83, 1111. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Matter, dark matter, and antimatter in our Universe. Int. J. Mod. Phys. A 2018, 33, 1844034. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Bento, L. Neutron–mirror-neutron oscillations: How fast might they be? Phys. Rev. Lett. 2006, 96, 081801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berezhiani, Z. More about neutron-mirror neutron oscillation. Eur. Phys. J. C 2009, 64, 421. [Google Scholar] [CrossRef] [Green Version]
- Ignatiev, A.Y.; Volkas, R.R. Geophysical constraints on mirror matter within the Earth. Phys. Rev. D 2000, 62, 023508. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Nesti, F. Magnetic anomaly in UCN trapping: Signal for neutron oscillations to parallel world? Eur. Phys. J. C 2012, 72, 1974. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Dolgov, A.D. Generation of large scale magnetic fields at recombination epoch. Astropart. Phys. 2004, 21, 59. [Google Scholar] [CrossRef] [Green Version]
- Khriplovich, I.B.; Lamoreaux, S.K. CP Violation Without Strangeness: Electric Dipole Moments of Particles, Atoms, and Molecules; Springer: Berlin/Heidelberg, Germany, 2012; Available online: http://inspirehep.net/record/460248 (accessed on 29 November 2021).
- Pospelov, M.; Ritz, A. Electric dipole moments as probes of new physics. Ann. Phys. 2005, 318, 119. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, N.F. A Molecular Beam Resonance Method with Separated Oscillating Fields. Phys. Rev. 1950, 78, 695. [Google Scholar] [CrossRef]
- Pokotilovski, Y.N. On the experimental search for neutron → mirror neutron oscillations. Phys. Lett. B 2006, 639, 214. [Google Scholar] [CrossRef] [Green Version]
- Kerbikov, B.; Lychkovskiy, O. Neutron–mirror-neutron oscillations in a trap. Phys. Rev. C 2008, 77, 065504. [Google Scholar] [CrossRef] [Green Version]
- Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomutov, N.; Kirch, K.; Kistryn, S.; Knecht, A.; et al. Direct experimental limit on neutron–mirror-neutron oscillations. Phys. Rev. Lett. 2007, 99, 161603. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.P.; Aleksandrov, E.B.; Dovator, N.A.; Dmitriev, S.P.; Fomin, A.K.; Geltenbort, P.; Kharitonov, A.G.; Krasnoschekova, I.A.; Lasakov, M.S.; Murashkin, A.N.; et al. Experimental search for neutron - mirror neutron oscillations using storage of ultracold neutrons. Phys. Lett. B 2008, 663, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.P.; Aleksandrov, E.B.; Dovator, N.A.; Dmitriev, S.P.; Fomin, A.K.; Geltenbort, P.; Kharitonov, A.G.; Krasnoschekova, I.A.; Lasakov, M.S.; Murashkin, A.N.; et al. Search for neutron–mirror neutron oscillations in a laboratory experiment with ultracold neutrons. Nucl. Instrum. Methods Phys. Res. A 2009, 611, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Altarev, I.; Baker, C.A.; Ban, G.; Bodek, K.; Daum, M.; Fierlinger, P.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; Gutsmiedl, E.; et al. Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields. Phys. Rev. D 2009, 80, 032003. [Google Scholar] [CrossRef] [Green Version]
- Bodek, K.; Kistryn, S.; Kuźniak, M.; Zejma, J.; Burghoff, M.; Knappe-Grüneberg, S.; Sander-Thoemmes, T.; Schnabel, A.; Trahms, L.; Ban, G.; et al. Additional results from the first dedicated search for neutron–mirror neutron oscillations. Nucl. Instrum. Methods Phys. Res. A 2009, 611, 141. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Biondi, R.; Geltenbort, P.; Krasnoshchekova, I.A.; Varlamov, V.E.; Vassiljev, A.V.; Zherebtsov, O.M. New experimental limits on neutron – mirror neutron oscillations in the presence of mirror magnetic field. Eur. Phys. J. C 2018, 78, 717. [Google Scholar] [CrossRef] [Green Version]
- Biondi, R. Monte Carlo simulation for ultracold neutron experiments searching for neutron–mirror neutron oscillation. Int. J. Mod. Phys. A 2018, 33, 1850143. [Google Scholar] [CrossRef] [Green Version]
- Abel, C.; Ayres, N.; Bison, G.; Bodek, K.; Bondar, V.; Chiu, P.-J.; Daum, M.; Emmenegger, S.; Flaux, P.; Ferraris-Bouchez, L.; et al. Statistical sensitivity of the nEDM apparatus at PSI to neutron mirror-neutron oscillations. EPJ Web Conf. 2019, 219, 07001. [Google Scholar] [CrossRef] [Green Version]
- Mohanmurthy, P. A Search for Neutron to Mirror-Neutron Oscillations. Ph.D. Thesis, ETH, Zurich, Switzerland, 2020. [Google Scholar] [CrossRef]
- Abel, C.; Ayres, N.J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.-J.; Crawford, C.; Daum, M.; et al. A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI. Phys. Lett. B 2021, 812, 135993. [Google Scholar] [CrossRef]
- Schmidt, U. An Experimental Limit on Neutron Mirror-Neutron Oscillation. Proceedings of BNLV International Workshop, Berkeley, CA, USA. 2007. Available online: http://inpa-old.lbl.gov/blnv2/files/Saturday/Session13/Schmidt.pdf (accessed on 29 November 2021).
- Ayres, N.J.; Bondar, V.; Emmenegger, S.; Kirch, K.; Krempel, J.; Bison, G.; Chiu, P.-J.; Daum, M.; Lauss, B.; Pais, D.; et al. Search for Neutron to Mirror-Neutron oscillations. Letter of Intent to PSI BVR 51. 2021. Available online: https://indico.psi.ch/event/8337/contributions/23142/attachments/16016/24135/LoI-Mirror-n.pdf (accessed on 29 November 2021).
- Broussard, L.J.; Bailey, K.M.; Bailey, W.B.; Barrow, J.L.; Chance, B.; Crawford, C.; Crow, L.; DeBeer-Schmitt, L.; Fomin, N.; Frost, M.; et al. New Search for Mirror Neutrons at HFIR. arXiv 2017, arXiv:1710.00767. [Google Scholar]
- Broussard, L.J.; Bailey, K.M.; Bailey, W.B.; Barrow, J.L.; Berry, K.; Blose, A.; Crawford, C.; Debeer-Schmitt, L.; Frost, M.; Galindo-Uribarri, A.; et al. New search for mirror neutron regeneration. EPJ Web Conf. 2019, 219, 07002. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.P.; Kolomenskiy, E.A.; Pirozhkov, A.N.; Krasnoschekova, I.A.; Vassiljev, A.V.; Polyushkin, A.O.; Lasakov, M.S.; Murashkin, A.N.; Solovey, V.A.; Fomin, A.K.; et al. New search for the neutron electric dipole moment with ultracold neutrons at ILL. Phys. Rev. C 2015, 92, 055501. [Google Scholar] [CrossRef]
- Apostolescu, S.; Ionescu, D.R.; Ionescu-Bujor, M.; Meitert, S.; Petrascu, M. Upper Limit of the Electric Dipole Moment of the Neutron. Rev. Roum. Physiol. 1969, 15, 343–353. [Google Scholar]
- Cohen, V.W.; Nathans, R.; Silsbee, H.B.; Lipworth, E.; Ramsey, N.F. Electric Dipole Moment of the Neutron. Phys. Rev. 1969, 177, 1942. [Google Scholar] [CrossRef]
- Dress, W.B.; Miller, P.D.; Pendlebury, J.M.; Perrin, P.; Ramsey, N.F. Search for an electric dipole moment of the neutron. Phys. Rev. D 1977, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.A.; Chibane, Y.; Chouder, M.; Geltenbort, P.; Green, K.; Harris, P.G.; Heckel, B.R.; Iaydjiev, P.; Ivanov, S.N.; Kilvington, I.; et al. Apparatus for measurement of the electric dipole moment of the neutron using a cohabiting atomic-mercury magnetometer. Nucl. Instrum. Methods Phys. Res. A 2014, 736, 184. [Google Scholar] [CrossRef] [Green Version]
- Afach, S.; Bison, G.; Bodek, K.; Burri, F.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Grujic, Z.; Hélaine, V.; et al. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute. J. Appl. Phys. 2014, 116, 084510. [Google Scholar] [CrossRef] [Green Version]
- Afach, S.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Geltenbort, P.; Grujić, Z.D.; et al. A device for simultaneous spin analysis of ultracold neutrons. Euro. Phys. J. A 2015, 51, 143. [Google Scholar] [CrossRef] [Green Version]
- Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Geltenbort, P.; Griffith, W.C.; Hélaine, V.; Henneck, R.; Kasprzak, M.; Kermaidic, Y.; et al. Ultracold neutron detection with 6Li-doped glass scintillators. Euro. Phys. J. A 2016, 52, 326. [Google Scholar] [CrossRef] [Green Version]
- Abel, C.; Afach, S.; Ayres, N.J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.-J.; Crawford, C.B.; et al. Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment. Phys. Rev. A 2020, 101, 053419. [Google Scholar] [CrossRef]
- Abel, C.; Ayres, N.J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.J.; Daum, M.; Emmenegger, S.; et al. nEDM experiment at PSI: Data-taking strategy and sensitivity of the dataset. EPJ Web Conf. 2019, 219, 02001. [Google Scholar] [CrossRef]
- Abel, C.; Ayres, N.; Baker, T.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Crawford, C.; Chiu, P.-J.; Chanel, E.; et al. Magnetic field uniformity in neutron electric dipole moment experiments. Phys. Rev. A 2019, 99, 042112. [Google Scholar] [CrossRef] [Green Version]
- Abel, C.; Afach, S.; Ayres, N.J.; Baker, C.A.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Burghoff, M.; Chanel, E.; et al. Measurement of the Permanent Electric Dipole Moment of the Neutron. Phys. Rev. Lett. 2020, 124, 081803. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Berezhiani, Z.; Kamyshkov, Y. Gauged B-L number and neutron–antineutron oscillation: Long-range forces mediated by baryophotons. Euro. Phys. J. C 2017, 77, 301. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.A.; Doyle, D.D.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; Harris, P.G.; Iaydjiev, P.; Ivanov, S.N.; May, D.J.R.; Pendlebury, J.M. Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 2006, 98, 149102. [Google Scholar] [CrossRef] [Green Version]
- Afach, S.; Baker, C.A.; Ban, G.; Bison, G.; Bodek, K.; Burghoff, M.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; et al. A measurement of the neutron to 199Hg magnetic moment ratio. Phys. Lett. B 2014, 739, 128. [Google Scholar] [CrossRef] [Green Version]
- Pendlebury, J.M.; Heil, W.; Sobolev, Y.; Harris, P.G.; Richardson, J.D.; Baskin, R.J.; Doyle, D.D.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; et al. Geometric-phase-induced false electric dipole moment signals for particles in traps. Phys. Rev. A 2004, 70, 032102. [Google Scholar] [CrossRef] [Green Version]
- Graner, B.; Chen, Y.; Lindahl, E.G.; Heckel, B.R. Reduced Limit on the Permanent Electric Dipole Moment of 199Hg. Phys. Rev. Lett. 2016, 116, 161601. [Google Scholar] [CrossRef] [Green Version]
- Pignol, G.; Guigue, M.; Petukhov, A.; Golub, R. Frequency shifts and relaxation rates for spin-1/2 particles moving in electromagnetic fields. Phys. Rev. A 2015, 92, 053407. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Tannoudji, C. Théorie quantique du cycle de pompage optique - Vérification expérimentale des nouveaux effets prévus. Ann. Phys. 1962, 13, 423. [Google Scholar] [CrossRef]
- Abragam, A.; Goldman, M. Nuclear Magnetism: Order and Disorder; Clarendon Press: Oxford, UK, 1982; Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:13681747 (accessed on 29 November 2021).
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26. [Google Scholar] [CrossRef]
- Piegsa, F.M. New concept for a neutron electric dipole moment search using a pulsed beam. Phys. Rev. C 2013, 88, 045502. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A. Present status and future prospects of n-EDM experiment of PNPI-ILL-PTI collaboration. Proc. Sci. 2017, 281, 179. [Google Scholar] [CrossRef]
- Wurm, D.; Beck, D.H.; Chupp, T.; Degenkolb, S.; Fierlinger, K.; Fierlinger, P.; Filter, H.; Ivanov, S.; Klau, C.; Kreuz, M.; et al. The PanEDM neutron electric dipole moment experiment at the ILL. EPJ Web Conf. 2019, 219, 02006. [Google Scholar] [CrossRef] [Green Version]
- Kuchler, F. Searches for Electric Dipole Moments—Overview of Status and New Experimental Efforts. Universe 2019, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.M.; Adamek, E.R.; Callahan, N.B.; Choi, J.H.; Clayton, S.M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D.E.; Geltenbort, P.; et al. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment. Phys. Rev. C 2018, 97, 012501. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.W.; Alarcon, R.; Aleksandrova, A.; Baeßler, S.; Barron-Palos, L.; Bartoszek, L.M.; Beck, D.H.; Behzadipour, M.; Berkutov, I.; Bessuille, J.; et al. A new cryogenic apparatus to search for the neutron electric dipole moment. J. Instrum. 2019, 14, P11017. [Google Scholar] [CrossRef] [Green Version]
- Ayres, N.J.; Ban, G.; Bienstman, L.; Bison, G.; Bodek, K.; Bondar, V.; Bouillaud, T.; Chanel, E.; Chen, J.; Chiu, P.-J.; et al. The design of the n2EDM experiment. Euro. Phys. J. C 2021, 81, 512. [Google Scholar] [CrossRef]
Errors from | ||
---|---|---|
Crossing point analysis | 107 | 138 |
14 | 18 | |
10 | 13 | |
5 | 6 | |
Hg-EDM | ||
Dipole contaminants | 4 | 5 |
Net rotational motion () | 2 | 3 |
drifts | 10 | |
7 | 9 | |
TOTAL | 110 | 140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanmurthy, P.; Young, A.R.; Winger, J.A.; Zsigmond, G. A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements. Symmetry 2022, 14, 487. https://doi.org/10.3390/sym14030487
Mohanmurthy P, Young AR, Winger JA, Zsigmond G. A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements. Symmetry. 2022; 14(3):487. https://doi.org/10.3390/sym14030487
Chicago/Turabian StyleMohanmurthy, Prajwal, Albert R. Young, Jeff A. Winger, and Geza Zsigmond. 2022. "A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements" Symmetry 14, no. 3: 487. https://doi.org/10.3390/sym14030487
APA StyleMohanmurthy, P., Young, A. R., Winger, J. A., & Zsigmond, G. (2022). A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements. Symmetry, 14(3), 487. https://doi.org/10.3390/sym14030487