Negative-Inertia Converters: Devices Manifesting Negative Mass and Negative Moment of Inertia
Abstract
:1. Introduction
2. Operational Principle of Negative-Inertia Converters
2.1. Realization of Negative Mass
2.2. Realization of Negative Moment of Inertia
3. Equivalence of Mechanical and Electrical NICs
4. Simulation Results and Stability Concerns
5. Applications and Limitations of Negative-Inertia Converters
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bilotti, F.; Sevgi, L. Metamaterials: Definitions, properties, applications, and FDTD-based modeling and simulation. Int. J. Microw.-Comput.-Aided Eng. 2012, 22, 422–438. [Google Scholar] [CrossRef]
- Tretyakov, S.A. A personal view on the origins and developments of the metamaterial concept. J. Opt. 2016, 19, 013002. [Google Scholar] [CrossRef]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of e and u. Sov. Phys. Usp. 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Tierney, B.B.; Grbic, A. Designing anisotropic, inhomogeneous metamaterial devices through optimization. IEEE Trans. Antennas Propag. 2018, 67, 998–1009. [Google Scholar] [CrossRef]
- Sarabandi, K.; Behdad, N. A frequency selective surface with miniaturized elements. IEEE Trans. Antennas Propag. 2007, 55, 1239–1245. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Grbic, A. Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans. Microw. Theory Tech. 2013, 61, 4407–4417. [Google Scholar] [CrossRef]
- Lončar, J.; Grbic, A.; Hrabar, S. Ultrathin active polarization-selective metasurface at X-band frequencies. Phys. Rev. B 2019, 100, 075131. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Wang, T. A review of acoustic metamaterials and phononic crystals. Crystals 2020, 10, 305. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Wang, X. Modelling of elastic metamaterials with negative mass and modulus based on translational resonance. Int. J. Solids Struct. 2019, 162, 271–284. [Google Scholar] [CrossRef]
- Graciá-Salgado, R.; García-Chocano, V.M.; Torrent, D.; Sánchez-Dehesa, J. Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications. Phys. Rev. B 2013, 88, 224305. [Google Scholar] [CrossRef]
- Bormashenko, E.; Legchenkova, I. Negative effective mass in plasmonic systems. Materials 2020, 13, 1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barchiesi, E.; Di Cosmo, F.; Laudato, M. A review of some selected examples of mechanical and acoustic metamaterials. Discret. Contin. Model. Complex Metamater. 2020, 2020, 52–102. [Google Scholar]
- Khamehchi, M.; Hossain, K.; Mossman, M.; Zhang, Y.; Busch, T.; Forbes, M.M.; Engels, P. Negative-mass hydrodynamics in a spin-orbit–coupled bose-einstein condensate. Phys. Rev. Lett. 2017, 118, 155301. [Google Scholar] [CrossRef] [PubMed]
- Colas, D.; Laussy, F.P.; Davis, M.J. Negative-mass effects in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett. 2018, 121, 055302. [Google Scholar] [CrossRef] [Green Version]
- Alcubierre, M. The warp drive: Hyper-fast travel within general relativity. Class. Quantum Gravity 1994, 11, L73. [Google Scholar] [CrossRef]
- Farnes, J.S. A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, L. An ultrawide-zero-frequency bandgap metamaterial with negative moment of inertia and stiffness. New J. Phys. 2021, 23, 043003. [Google Scholar] [CrossRef]
- Foster, R.M. A Reactance Theorem. Bell Labs Tech. J. 1924, 3, 259–267. [Google Scholar] [CrossRef]
- Merrill, J., Jr. Theory of the negative impedance converter. Bell Syst. Tech. J. 1951, 30, 88–109. [Google Scholar] [CrossRef]
- Sievenpiper, D.F. Superluminal Waveguides Based on Non-Foster Circuits for Broadband Leaky-wave Antennas. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 231–234. [Google Scholar] [CrossRef]
- Weldon, T.P.; Miehle, K.; Adams, R.S.; Daneshvar, K. A Wideband Microwave Double-negative Metamaterial with Non-Foster Loading. In Proceedings of the 2012 IEEE Southeastcon, Orlando, FL, USA, 15–18 March 2012; pp. 1–5. [Google Scholar]
- Linvill, J.G. Transistor Negative Impedance Converters. Proc. IRE 1953, 41, 725–729. [Google Scholar] [CrossRef]
- Linvill, J.G. RC Active Ffilters. Proc. IRE 1954, 42, 555–564. [Google Scholar] [CrossRef]
- Larky, A. Negative-impedance Converters. IRE Trans. Circuit Theory 1957, 4, 124–131. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, F.; Long, J.; Jacob, M.; Sievenpiper, D. Non-dispersive Tunable Reflection Phase Shifter Based on Non-Foster Circuits. Electron. Lett. 2014, 50, 1616–1618. [Google Scholar] [CrossRef]
- Perry, A.K. Broadband Antenna Systems Realized from Active Circuit Conjugate Impedance Matching; Technical Report, DTIC Document; Naval Postgraduate School: Monterey, CA, USA, 1973; Available online: https://apps.dtic.mil/sti/citations/AD0769800 (accessed on 25 January 2022).
- Song, K.S.; Rojas, R.G. Electrically Small Wire Monopole Antenna with Non-Foster Impedance Element. In Proceedings of the IEEE Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–4. [Google Scholar]
- Zhu, N.; Ziolkowski, R.W. Design and Measurements of an Electrically Small, Broad Bandwidth, Non-Foster Circuit-augmented Protractor Antenna. Appl. Phys. Lett. 2012, 101, 024107. [Google Scholar] [CrossRef] [Green Version]
- Jacob, M.M.; Long, J.; Sievenpiper, D.F. Broadband Non-Foster Matching of an Electrically Small Loop Antenna. In Proceedings of the IEEE International Symposium on Antennas and Propagation Society (APSURSI), Chicago, IL, USA, 8–14 July 2012; pp. 1–2. [Google Scholar]
- Almokdad, S.; Lababidi, R.; Le Roy, M.; Sadek, S.; Pérennec, A.; Le Jeune, D. Methodology for broadband matching of electrically small antenna using combined non-Foster and passive networks. Analog. Integr. Circuits Signal Process. 2020, 104, 251–263. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Zhang, S. A non-foster matching circuit for an ultra-wideband electrically small monopole antenna. In Proceedings of the IEEE 13th European Conference on Antennas and Propagation, Krakow, Poland, 31 March–5 April 2019; pp. 1–3. [Google Scholar]
- Ghadiri, A.; Moez, K. Gain-enhanced Distributed Amplifier Using Negative Capacitance. IEEE Trans. Circuits Syst. Regul. Pap. 2010, 57, 2834–2843. [Google Scholar] [CrossRef]
- Lončar, J.; Šipuš, Z. Challenges in design of power-amplifying active metasurfaces. In Proceedings of the 2020 IEEE International Symposium ELMAR, Zadar, Croatia, 14–15 September 2020; pp. 9–12. [Google Scholar]
- Lončar, J.; Grbic, A.; Šipuš, Z. Synthesis of NIC-based Reflection Amplifiers for Metasurfaces. In Proceedings of the 2020 IEEE Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), New York, NY, USA, 27 September–3 October 2020; pp. 456–458. [Google Scholar]
- Lončar, J.; Hrabar, S. Stability of metasurface-based parity-time symmetric systems. In Proceedings of the 2016 IEEE 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Chania, Greece, 19–22 September 2016; pp. 130–132. [Google Scholar]
- Lončar, J.; Vuković, J.; Krois, I.; Hrabar, S. Stability Constraints on Practical Implementation of Parity-Time-Symmetric Electromagnetic Systems. Photonics 2021, 8, 56. [Google Scholar] [CrossRef]
- Bellman, R.; Roth, R.S. The Laplace Transform; World Scientific: Singapore, 1984; Volume 3. [Google Scholar]
- Firestone, F.A. A new analogy between mechanical and electrical systems. J. Acoust. Soc. Am. 1933, 4, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Lončar, J.; Muha, D.; Hrabar, S. Influence of transmission line on stability of networks containing ideal negative capacitors. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 73–74. [Google Scholar]
- Lončar, J.; Hrabar, S.; Muha, D. Stability of Simple Lumped-distributed Networks with Negative Capacitors. IEEE Trans. Antennas Propag. 2016, 65, 390–395. [Google Scholar] [CrossRef]
- Gavrilovich, I.; Krut, S.; Gouttefarde, M.; Pierrot, F.; Dusseau, L. Test bench for nanosatellite attitude determination and control system ground tests. In Proceedings of the 4S: Small Satellites Systems and Services Symposium, Majorca, Spain, 26–30 May 2014; ESA: Noordwijk, The Netherlands, 2014. [Google Scholar]
Translational NIC | Rotational NIC | Electrical NIC | |||
---|---|---|---|---|---|
Description | Expression | Description | Expression | Description | Expression |
Mass | M | Moment of inertia | J | Capacitance | C |
Linear Velocity | Angular Velocity | Voltage | U | ||
Force | Torque | Current | I | ||
Total Force | Total Torque | Total Current | |||
Reaction Force | Reaction Torque | Reaction Current | |||
External Force | External Torque | External Current |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lončar, J.; Igrec, B.; Babić, D. Negative-Inertia Converters: Devices Manifesting Negative Mass and Negative Moment of Inertia. Symmetry 2022, 14, 529. https://doi.org/10.3390/sym14030529
Lončar J, Igrec B, Babić D. Negative-Inertia Converters: Devices Manifesting Negative Mass and Negative Moment of Inertia. Symmetry. 2022; 14(3):529. https://doi.org/10.3390/sym14030529
Chicago/Turabian StyleLončar, Josip, Bojan Igrec, and Dubravko Babić. 2022. "Negative-Inertia Converters: Devices Manifesting Negative Mass and Negative Moment of Inertia" Symmetry 14, no. 3: 529. https://doi.org/10.3390/sym14030529
APA StyleLončar, J., Igrec, B., & Babić, D. (2022). Negative-Inertia Converters: Devices Manifesting Negative Mass and Negative Moment of Inertia. Symmetry, 14(3), 529. https://doi.org/10.3390/sym14030529