A Bimodal Model Based on Truncation Positive Normal with Application to Height Data
Abstract
:1. Introduction
2. A Bimodal Truncation Positive Normal Distribution
2.1. Stochastic Representation, pdf and cdf
2.2. Moments and Moment-Generating Function
2.3. Mode and Unimodality and Bimodality Regions
2.4. Particular Cases
- btpn tpn;
- btpn N, i.e., the normal distribution with mean 0 and variance ;
- btpn esn, i.e., the epsilon skew-normal distribution (Mudholkar and Hutson [10]).
3. Inference
3.1. Maximum Likelihood Function
3.2. Computational Aspects
- est.btpn(y)
4. Simulation Study
5. Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashman, K.M.; Bird, C.M.; Zepf, S.E. Detecting Bimodality in Astronomical Datasets. Astron. J. 1994, 108, 2348–2361. [Google Scholar] [CrossRef] [Green Version]
- Michele, C.; Accatino, F. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics. PLoS ONE 2014, 9, e91195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wen, S.; Symmans, W.F.; Pusztai, L.; Coombes, K.R. The bimodality index: A criterion for discovering and ranking bimodal signatures from cancer gene expression profiling data. Cancer Inform. 2009, 7, 199–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, C.A.; Fryer, J.G. Some descriptive properties of normal mixtures. Scand. Actuar. J. 1969, 3–4, 137–146. [Google Scholar] [CrossRef]
- Gómez, H.W.; Elal-Olivero, D.; Salinas, H.S.; Bolfarine, H. Bimodal extension based on the skew-normal distribution with application to pollen data. Environmetrics 2011, 22, 50–62. [Google Scholar] [CrossRef]
- Venegas, O.; Salinas, H.S.; Gallardo, D.I.; Bolfarine, H.; Gómez, H.W. Bimodality based on the generalized skew-normal distribution. J. Stat. Comput. Simul. 2018, 88, 156–181. [Google Scholar] [CrossRef]
- Butt, N.S.; Khalil, M.G. A New Bimodal Distribution for Modeling Asymmetric Bimodal Heavy-Tail Real Lifetime Data. Symmetry 2020, 12, 2058. [Google Scholar] [CrossRef]
- Gómez, Y.M.; Gómez-Déniz, E.; Venegas, O.; Gallardo, D.I.; Gómez, H.W. An Asymmetric Bimodal Distribution with Application to Quantile Regression. Symmetry 2019, 11, 899. [Google Scholar] [CrossRef] [Green Version]
- Gómez, H.J.; Olmos, N.M.; Varela, H.; Bolfarine, H. Inference for a truncated positive normal distribution. Appl. Math. J. Chin. Univ. 2018, 33, 163–176. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Hutson, A.D. The epsilon–skew–normal distribution for analyzing near-normal data. J. Stat. Plan. Inference 2000, 83, 291–309. [Google Scholar] [CrossRef]
- Mittelhammer, R.C.; Judge, G.G.; Miller, D.J. Econometric Foundations; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Gallardo, D.I.; Gómez, H.J.; Gómez, Y.M. tpn: Truncated Positive Normal Model and Extensions. R Package Version 1.1. 2021. Available online: https://cran.r-project.org/web/packages/tpn/index.html (accessed on 25 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 25 January 2022).
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Cruz-Medina, I.R.; Olmos, N.M. Almost Nonparametric and Nonparametric Estimation in Mixture Model. Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 2001. [Google Scholar]
- Abdulah, E.K.; Elsalloukh, H. Bimodal Class based on the Inverted Symmetrized Gamma Distribution with Applications. J. Stat. Appl. Probab. 2014, 3, 1–7. [Google Scholar] [CrossRef]
- Elal-Olivero, D. Alpha-skew-normal distribution. Proyecciones 2010, 29, 224–240. [Google Scholar] [CrossRef] [Green Version]
- Dunn, P.K.; Smyth, G.K. Randomized quantile residuals. J. Comput. Graph. Stat. 1996, 5, 236–244. [Google Scholar]
- Magalhães, T.M.; Gómez, Y.M.; Gallardo, D.I.; Venegas, O. Bias reduction for the Marshall-Olkin extended family of distributions with application to an airplane’s air conditioning system and precipitation data. Symmetry 2020, 12, 851. [Google Scholar] [CrossRef]
- Magalhães, T.M.; Botter, D.A.; Sandoval, M.C. A general expression for second-order covariance matrices—An application to dispersion models. Braz. J. Probab. Stat. 2021, 35, 37–49. [Google Scholar] [CrossRef]
- Cade, B.S.; Noon, B.R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 2003, 1, 412–420. [Google Scholar] [CrossRef]
- Alencar, A.P.; Santos, B.R. Association of pollution with quantiles and expectations of the hospitalization rate of elderly people by respiratory diseases in the city of São Paulo, Brazil. Environmetrics 2014, 25, 165–171. [Google Scholar] [CrossRef]
- Gómez, Y.M.; Gallardo, D.I.; Venegas, O.; Magalhães, T.M. An asymmetric bimodal double regression model. Symmetry 2021, 13, 2279. [Google Scholar] [CrossRef]
True Value | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
par. | bias | SE | RMSE | CP | bias | SE | RMSE | CP | bias | SE | RMSE | CP | ||
−0.75 | −0.5 | 0.894 | 3.271 | 8.403 | 0.814 | 0.170 | 1.089 | 3.165 | 0.856 | 0.035 | 0.514 | 0.584 | 0.898 | |
−0.831 | 3.405 | 8.561 | 0.862 | −0.132 | 1.237 | 3.050 | 0.891 | −0.028 | 0.638 | 0.691 | 0.917 | |||
−0.018 | 0.112 | 0.121 | 0.940 | −0.008 | 0.078 | 0.081 | 0.945 | −0.003 | 0.055 | 0.057 | 0.947 | |||
0.75 | 0.736 | 2.490 | 7.381 | 0.802 | 0.233 | 1.218 | 3.497 | 0.862 | 0.041 | 0.538 | 0.630 | 0.901 | ||
−0.663 | 2.663 | 7.325 | 0.855 | −0.205 | 1.368 | 3.453 | 0.897 | −0.029 | 0.660 | 0.728 | 0.924 | |||
0.030 | 0.142 | 0.167 | 0.936 | 0.014 | 0.099 | 0.106 | 0.945 | 0.009 | 0.070 | 0.073 | 0.947 | |||
1 | −0.5 | −0.057 | 0.350 | 0.360 | 0.887 | −0.026 | 0.248 | 0.250 | 0.914 | −0.012 | 0.175 | 0.176 | 0.936 | |
0.073 | 0.406 | 0.416 | 0.938 | 0.035 | 0.285 | 0.289 | 0.946 | 0.014 | 0.201 | 0.201 | 0.949 | |||
−0.014 | 0.086 | 0.095 | 0.932 | −0.008 | 0.061 | 0.064 | 0.940 | −0.003 | 0.043 | 0.045 | 0.944 | |||
0.75 | −0.055 | 0.350 | 0.355 | 0.884 | −0.024 | 0.248 | 0.251 | 0.919 | −0.015 | 0.174 | 0.176 | 0.931 | ||
0.072 | 0.406 | 0.412 | 0.935 | 0.035 | 0.285 | 0.288 | 0.943 | 0.020 | 0.200 | 0.203 | 0.942 | |||
0.028 | 0.109 | 0.127 | 0.940 | 0.012 | 0.076 | 0.082 | 0.942 | 0.006 | 0.054 | 0.055 | 0.943 | |||
3 | −0.5 | −0.049 | 0.203 | 0.214 | 0.919 | −0.022 | 0.145 | 0.152 | 0.930 | −0.013 | 0.103 | 0.106 | 0.936 | |
0.103 | 0.356 | 0.383 | 0.948 | 0.047 | 0.248 | 0.262 | 0.947 | 0.028 | 0.174 | 0.180 | 0.948 | |||
−0.007 | 0.051 | 0.054 | 0.937 | −0.003 | 0.036 | 0.036 | 0.949 | −0.001 | 0.025 | 0.026 | 0.950 | |||
0.75 | −0.048 | 0.203 | 0.214 | 0.917 | −0.023 | 0.145 | 0.148 | 0.932 | −0.012 | 0.103 | 0.103 | 0.946 | ||
0.105 | 0.356 | 0.385 | 0.946 | 0.046 | 0.248 | 0.253 | 0.952 | 0.024 | 0.174 | 0.175 | 0.953 | |||
0.011 | 0.064 | 0.072 | 0.933 | 0.005 | 0.045 | 0.048 | 0.939 | 0.002 | 0.032 | 0.033 | 0.942 |
True Value | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
par. | bias | SE | RMSE | CP | bias | SE | RMSE | CP | bias | SE | RMSE | CP | ||
−0.75 | −0.5 | 2.279 | 10.597 | 19.571 | 0.802 | 0.961 | 5.254 | 11.695 | 0.864 | 0.221 | 2.538 | 3.411 | 0.900 | |
−0.400 | 2.336 | 4.023 | 0.857 | −0.161 | 1.209 | 2.328 | 0.896 | −0.034 | 0.632 | 0.780 | 0.924 | |||
−0.020 | 0.112 | 0.126 | 0.938 | −0.009 | 0.079 | 0.083 | 0.949 | −0.004 | 0.055 | 0.056 | 0.950 | |||
0.75 | 1.748 | 9.147 | 17.694 | 0.797 | 0.608 | 5.063 | 7.312 | 0.859 | 0.157 | 2.496 | 3.225 | 0.891 | ||
−0.272 | 2.046 | 3.498 | 0.856 | −0.093 | 1.172 | 1.548 | 0.895 | −0.021 | 0.623 | 0.734 | 0.920 | |||
0.038 | 0.143 | 0.177 | 0.933 | 0.013 | 0.099 | 0.103 | 0.951 | 0.007 | 0.069 | 0.072 | 0.945 | |||
1 | −0.5 | −0.225 | 1.772 | 1.829 | 0.887 | −0.126 | 1.237 | 1.260 | 0.916 | −0.057 | 0.876 | 0.891 | 0.932 | |
0.065 | 0.408 | 0.415 | 0.938 | 0.037 | 0.285 | 0.289 | 0.940 | 0.015 | 0.201 | 0.205 | 0.943 | |||
−0.014 | 0.086 | 0.095 | 0.936 | −0.005 | 0.060 | 0.063 | 0.943 | −0.002 | 0.043 | 0.043 | 0.952 | |||
0.75 | −0.284 | 1.744 | 1.756 | 0.886 | −0.136 | 1.236 | 1.255 | 0.913 | −0.059 | 0.875 | 0.869 | 0.933 | ||
0.073 | 0.405 | 0.405 | 0.941 | 0.037 | 0.285 | 0.288 | 0.943 | 0.016 | 0.201 | 0.201 | 0.946 | |||
0.028 | 0.109 | 0.131 | 0.926 | 0.012 | 0.076 | 0.081 | 0.945 | 0.008 | 0.054 | 0.056 | 0.946 | |||
3 | −0.5 | 1.985 | 2.784 | 30.165 | 0.913 | 1.699 | 1.824 | 26.982 | 0.928 | 1.113 | 0.799 | 22.887 | 0.932 | |
0.023 | 0.420 | 1.320 | 0.941 | −0.032 | 0.287 | 1.178 | 0.947 | −0.025 | 0.184 | 0.955 | 0.941 | |||
−0.004 | 0.051 | 0.054 | 0.934 | −0.002 | 0.036 | 0.037 | 0.944 | −0.001 | 0.026 | 0.026 | 0.948 | |||
0.75 | 0.386 | 4.618 | 13.399 | 0.918 | 0.596 | 1.816 | 14.121 | 0.924 | 0.355 | 0.929 | 10.561 | 0.943 | ||
0.071 | 0.474 | 0.692 | 0.954 | 0.016 | 0.285 | 0.680 | 0.941 | 0.003 | 0.188 | 0.503 | 0.952 | |||
0.019 | 0.065 | 0.076 | 0.925 | 0.015 | 0.046 | 0.051 | 0.935 | 0.008 | 0.033 | 0.034 | 0.941 |
Data Set | n | ||||
---|---|---|---|---|---|
weight measured | 126 | 0 | 1 |
Estimated | btpn | esig | asn |
---|---|---|---|
0.813 (0.113) | 1.304 (0.148) | 0.996 (0.063) | |
0.496 (0.316) | 0.527 (0.073) | 0.014 (3.422) | |
−0.002 (0.048) | 0.095 (0.059) | 0.014 (3.409) | |
AIC | 360.76 | 415.79 | 362.67 |
BIC | 369.27 | 424.30 | 375.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, H.J.; Caimanque, W.E.; Gómez, Y.M.; Magalhães, T.M.; Concha, M.; Gallardo, D.I. A Bimodal Model Based on Truncation Positive Normal with Application to Height Data. Symmetry 2022, 14, 665. https://doi.org/10.3390/sym14040665
Gómez HJ, Caimanque WE, Gómez YM, Magalhães TM, Concha M, Gallardo DI. A Bimodal Model Based on Truncation Positive Normal with Application to Height Data. Symmetry. 2022; 14(4):665. https://doi.org/10.3390/sym14040665
Chicago/Turabian StyleGómez, Héctor J., Wilson E. Caimanque, Yolanda M. Gómez, Tiago M. Magalhães, Miguel Concha, and Diego I. Gallardo. 2022. "A Bimodal Model Based on Truncation Positive Normal with Application to Height Data" Symmetry 14, no. 4: 665. https://doi.org/10.3390/sym14040665
APA StyleGómez, H. J., Caimanque, W. E., Gómez, Y. M., Magalhães, T. M., Concha, M., & Gallardo, D. I. (2022). A Bimodal Model Based on Truncation Positive Normal with Application to Height Data. Symmetry, 14(4), 665. https://doi.org/10.3390/sym14040665