Next Article in Journal
Reliability Estimation for Stress-Strength Model Based on Unit-Half-Normal Distribution
Next Article in Special Issue
Some New Quantum Hermite-Hadamard Type Inequalities for s-Convex Functions
Previous Article in Journal
A Generalization of Group-Graded Modules
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications

by
Soubhagya Kumar Sahoo
1,
Ravi P. Agarwal
2,
Pshtiwan Othman Mohammed
3,
Bibhakar Kodamasingh
1,
Kamsing Nonlaopon
4,* and
Khadijah M. Abualnaja
5
1
Department of Mathematics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar 751030, India
2
Department of Mathematics, Texas A & M University-Kingsville, Kingsville, TX 78363, USA
3
Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Iraq
4
Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand
5
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(4), 836; https://doi.org/10.3390/sym14040836
Submission received: 15 March 2022 / Revised: 7 April 2022 / Accepted: 13 April 2022 / Published: 18 April 2022
(This article belongs to the Special Issue Symmetry in Fractional Calculus and Inequalities)

Abstract

:
Many scholars have recently become interested in establishing integral inequalities using various known fractional operators. Fractional calculus has grown in popularity as a result of its capacity to quickly solve real-world problems. First, we establish new fractional inequalities of the Hadamard–Mercer, Pachpatte–Mercer, and Dragomir–Agarwal–Mercer types containing an exponential kernel. In this regard, the inequality proved by Jensen and Mercer plays a major role in our main results. Integral inequalities involving convexity have a wide range of applications in several domains of mathematics where symmetry is important. Both convexity and symmetry are closely linked with each other; when working on one of the topics, you can apply what you have learned to the other. We consider a new identity for differentiable mappings and present its companion bound for the Dragomir–Agarwal–Mercer type inequality employing a convex function. Applications involving matrices are presented. Finally, we conclude our article and discuss its future scope.

1. Introduction

The significance of fractional calculus has lately been recognized, and various publications incorporating fractional calculus have recently been published. Fractional operators are particularly important in the development of fractional calculus. Many diverse branches of engineering and science, including physics [1], nanotechnology [2], medicine [3], bioengineering [4], economics [5], fluid mechanics [6], epidemiology [7], and control systems [8] use fractional calculus. Fractional operators have been shown in several studies to accurately explain complicated multiscale phenomena that are difficult to represent using traditional mathematical calculus. The importance of fractional calculus is now widely recognized, and various studies involving fractional calculus have been carried out.
Fractional calculus is well-known for its goal of building mathematical models. Refining well-known integral inequalities using fractional integral operators has recently been a fascinating subject of research among mathematicians. Sarikaya [9] proposed the concept of using a fractional integral operator to present the Hermite–Hadamard inequality. Inspired by this article, Liu et al. [10] generalized the Hermite–Hadamard inequality for the ψ -Riemann–Liouville fractional operator. Analogously, to list a few authors: Mumcu et al. [11] used a generalized proportional fractional integral, Gürbüz et al. [12] worked on the Caputo–Fabrizio operator, Fernandez et al. [13] used the concept of the Atangana–Baleanu fractional operator with the Mittag–Leffler kernel, Khan et al. [14] worked on a generalized conformable operator, Mohammed et al. [15] utilized tempered fractional integrals, and Sahoo et al. [16] used k -Riemann–Liouville fractional integrals to improve the Hermite–Hadamard inequality. The use of several types of fractional operators and innovative approaches to generalizing some existing integral inequalities, such as Hermite–Hadamard, Simpson, Opial, Fejér, and Ostrowski-type inequalities, led to a revolution in inequality theory.
Based on their basic properties, researchers derive novel fractional operators and use them to tackle a variety of real-world issues. New fractional operators are used in various monographs and papers to improve integral inequalities, such as the Minkowski inequality, the Simpson inequality, the Jensen–Mercer inequality, the Fejér-type inequality, the Hermite–Hadamard-type inequality, and others. These forms of analytic inequalities, as well as the approaches described in this article, have applications in a variety of domains where symmetry is important. For more information on current developments in fractional integral inequalities, see articles [17,18,19,20].
Integral inequalities are widely employed in a variety of fields, such as mathematics, applied sciences, differential equations, and functional analysis. Researchers have been studying these inequalities for the past two decades. Different types of integral inequalities are employed in most mathematical analysis disciplines. Approximation theory and numerical analysis, which estimate error approximation, rely heavily on them.
This article focuses on a new fractional operator having an exponential function in the kernel. In recent years, numerous analysts have looked into many possible approaches to describing new fractional operators using various methodologies that can handle the majority of real-world situations. The kernel structures and other aspects of fractional operators usually differ from one another. The main feature that distinguishes this new fractional operator from others is that it has an exponential function in its kernel, which is useful for finding precise solutions to problems.
Definition 1
([21,22]). A function S : X R said to be a convex function, if
S σ 1 ς + 1 ς σ 2 ς S σ 1 + 1 ς S σ 2 ,
holds true for all σ 1 , σ 2 X and ς [ 0 , 1 ] .
To encourage further discussion, we first present the classical Hermite–Hadmard inequality that states (see [23]):
If S : X R R is a convex function in X for σ 1 , σ 2 X and σ 1 < σ 2 , then
S ( σ 1 + σ 2 2 ) 1 σ 2 σ 1 σ 1 σ 2 S ( x ) d x S ( σ 1 ) + S ( σ 2 ) 2 .
We direct interested readers to articles [9,24,25,26,27] for generalizations of the H–H inequality.
The Jensen’s inequality (see [28]) states that:
If the convexity of S holds true on the interval 1 , 2 , then
S n k = 1 θ k η k n k = 1 θ k S η k ,
for all η k [ μ , ν ] , θ k 0 , 1 a n d k = 1 , 2 , , n .
Mercer in [29] investigated a generalized form of Jensen’s inequality, which is famously known as the J–M inequality, given as:
Let S be a convex function on μ , ν , then
S μ + ν n k = 1 ς k γ k S μ + S ν n k = 1 ς k S γ k ,
holds true for all γ k μ , ν ,   ς k 0 , 1 and k = 1 , 2 , , n .
Then, Matkovic [30] and Vivas et al. [31] published new versions of the Jensen–Mercer inequality in the years 2016 and 2017, respectively. In [32], Kian and Moslehian used classical integrals to prove the following two improved inequalities for convex functions:
Theorem 1
([32]). Let S : [ σ 1 , σ 1 ] R be a convex function. Then the following H–H–M-type fractional integral inequality holds true:
S μ + ν σ 1 + σ 1 2 S ( μ ) + S ( ν ) 0 1 S ( ς σ 1 + ( 1 ς ) σ 2 ) d ς S ( μ ) + S ( ν ) S σ 1 + σ 2 2 ,
and
S μ + ν σ 1 + σ 1 2 1 σ 2 σ 1 σ 1 σ 2 S ( μ + ν ς ) d ς S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 2 ,
for all σ 1 , σ 2 [ μ , ν ] and ζ > 0 .
Much research on the Jensen–Mercer inequality has been conducted recently; see ([33,34,35]). Some researchers worked in this direction to improve the Hermite–Hadamard inequality via the Jensen–Mercer setting (see [36,37,38]). Recently, the Hermite–Hadamard–Mercer type inequality was also improved by You et al. [39] for the harmonically convex function, by Khan et al. [40] for the Csiszár divergence and the Zipf–Mandelbrot entropy, and by Butt et al. [41,42] for fractional operators.
Inspired by the work performed by the above authors, we structure the paper in the following manner. We review some basic definitions and concepts connected to integral inequalities in Section 2. We develop a new variant of the Hermite–Hadamard–Mercer and Pachpatte–Mercer type inequalities employing a novel fractional operator in Section 3. Next, Section 4 is devoted to proving a new fractional integral identity and a Dragomir–Agarwal–Mercer type inequality involving an exponential function in the kernel for differentiable mappings. We derive several concrete examples as applications of our results in Section 5. In the last Section 6, we provide a brief conclusion and discuss some ideas for future research.

2. Preliminaries

To encourage additional conversation about this article, we present the definition of the R–L fractional operator and related Hermite–Hadamard–Mercer type inequalities.
Definition 2
(see [9]). Let [ σ 1 , σ 1 ] R . Then, R-L fractional integrals I σ 1 + ζ S ( x ) and I σ 2 ζ S ( x ) of order ζ > 0 are defined by
I σ 1 + ζ S ( z ) = 1 Γ ( ζ ) σ 1 z ( z x ) ζ 1 S ( x ) d x
and
I σ 2 ζ S ( z ) = 1 Γ ( ζ ) z σ 2 ( x z ) ζ 1 S ( x ) d x ,
where Γ ( . ) is the Gamma function.
In [43], Öğülmüs and Sarikaya employed the R–L fractional integrals to generalize the Hermite–Hadamard–Mercer-type inequalities as follows:
Theorem 2
([43]). Let S : [ μ , μ ] R be a convex function. Then the following fractional integral inequality holds true:
S μ + ν σ 1 + σ 1 2 S ( μ ) + S ( ν ) Γ ( ζ + 1 ) 2 ( σ 2 σ 1 ) ζ I σ 1 + ζ S ( σ 2 ) + I σ 2 ζ S ( σ 1 ) S ( μ ) + S ( ν ) S σ 1 + σ 2 2 ,
and
S μ + ν σ 1 + σ 1 2    Γ ( ζ + 1 ) 2 ( σ 2 σ 1 ) ζ I ( μ + ν σ 2 ) + ζ S ( μ + ν σ 1 ) + I ( μ + ν σ 1 ) ζ S ( μ + ν σ 2 ) S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 2 ,
for all σ 1 , σ 2 [ μ , ν ] and ζ > 0 .
Many researchers have been interested in applying novel fractional operators to the Jensen–Mercer inequality over the years. Some further interesting fractional refinements on the Hermite–Hadamard–Jensen–Mercer inequalities have been widely studied in the literature; see [44,45,46,47,48,49,50,51]. Researchers have been extremely interested in their generalizations and improvements during the previous few decades, as evidenced by a significant number of publications on the theme.
Before getting into the key conclusions, we go over the definitions of the new fractional operators and some fundamental concepts of inequality theory.
Definition 3
(see [52] for details). Let Υ L ϱ 1 , ϱ 2 . Then the fractional integrals J ϱ 1 + α and J ϱ 2 α of order α > 0 are defined as
J ϱ 1 α Υ x : = 1 α ϱ 1 x e 1 α α x z Υ z d z ( 0 ϱ 1 < x < ϱ 2 )
and
J ϱ 2 α Υ x : = 1 α x ϱ 2 e 1 α α z x Υ z d z ( 0 ϱ 1 < x < ϱ 2 ) ,
respectively.
For brevity, we denote ρ = 1 α α ( σ 2 σ 1 ) throughout the manuscript.

3. Hadamard–Jensen–Mercer- and Pachpatte–Mercer-Type Inequalities via Fractional Integrals

Theorem 3.
Let S : I = [ σ 1 , σ 2 ] R be a convex function on I such that ( σ 1 , σ 2 ) I and S L [ σ 1 , σ 2 ] . Then, for 0 σ 1 < σ 2 and ζ [ 0 , 1 ] the following fractional inequality holds true:
S μ + ν σ 1 + σ 2 2     [ S ( μ ) + S ( ν ) ] 1 α 2 ( 1 e ρ ) J σ 1 + α Υ σ 2 + J σ 2 α Υ σ 1 [ S ( μ ) + S ( ν ) ] S σ 1 + σ 2 2 .
Proof. 
Since S is a convex function on [ σ 1 , σ 2 ] , by the hypotheses of Jensen–Mercer inequality, we can write
S μ + ν Υ 1 + Υ 2 2 S ( μ ) + S ( ν ) S Υ 1 + Υ 2 2
Now, if we let Υ 1 = ς σ 1 + ( 1 ς ) σ 2 and Υ 2 = ς σ 2 + ( 1 ς ) σ 1 , we have
S μ + ν σ 1 + σ 2 2 S ( μ ) + S ( ν ) S ς σ 1 + ( 1 ς ) σ 2 + S ς σ 1 + ( 1 ς ) σ 2 2 .
If we multiply the above inequality by e 1 α α ( σ 2 σ 1 ) ς and then integrate the obtained inequality over [0, 1], we find that
0 1 e 1 α α ( σ 2 σ 1 ) ς S μ + ν σ 1 + σ 2 2 d ς S ( μ ) + S ( ν ) 0 1 e 1 α α ( σ 2 σ 1 ) ς d ς     1 2 0 1 e 1 α α ( σ 2 σ 1 ) ς S ς σ 1 + ( 1 ς ) σ 2 + S ς σ 1 + ( 1 ς ) σ 2 d ς ,
consequently,
1 e ρ ρ S μ + ν σ 1 + σ 2 2 [ S ( μ ) + S ( ν ) ] 1 e ρ ρ     1 2 ( σ 2 σ 1 ) σ 1 σ 2 e 1 α α ( σ 2 u ) S ( u ) d u + σ 1 σ 2 e 1 α α ( u σ 1 ) S ( u ) d u ,
which readily yields
S μ + ν σ 1 + σ 2 2 [ S ( μ ) + S ( ν ) ] 1 α 2 ( 1 e ρ ) J σ 1 + α Υ σ 2 + J σ 2 α Υ σ 1 .
This gives us the first part of the desired result. For the second part, we use the convexity of S .
S Υ 1 + Υ 2 2 = S ς σ 1 + ( 1 ς ) σ 2 + ς σ 2 + ( 1 ς ) σ 1 2 S ς σ 1 + ( 1 ς ) σ 2 + S ς σ 2 + ( 1 ς ) σ 1 2 .
If we multiply the above Equation (7) by e 1 α α ( σ 2 σ 1 ) ς and then integrate the obtained inequality over [0, 1], we find that
S Υ 1 + Υ 2 2 0 1 e 1 α α ( σ 2 σ 1 ) ς d ς 1 2 0 1 e 1 α α ( σ 2 σ 1 ) ς S ς σ 1 + ( 1 ς ) σ 2 d ς + 0 1 e 1 α α ( σ 2 σ 1 ) ς S ς σ 2 + ( 1 ς ) σ 1 d ς .
It follows from the above developments that
1 e ρ ρ S σ 1 + σ 2 2 α 2 ( σ 2 σ 1 ) J σ 1 + α Υ σ 2 + J σ 2 α Υ σ 1 .
This implies
S σ 1 + σ 2 2 1 α 2 ( 1 e ρ ) J σ 1 + α Υ σ 2 + J σ 2 α Υ σ 1 .
Now adding [ S ( μ ) + S ( ν ) ] to both sides of the above Equation (8), we have
[ S ( μ ) + S ( ν ) ] S σ 1 + σ 2 2        [ S ( μ ) + S ( ν ) ] 1 α 2 ( 1 e ρ ) J σ 1 + α Υ σ 2 + J σ 2 α Υ σ 1 .
From Equations (6) and (9), the proof is completed. □
Theorem 4.
Let S : I = [ σ 1 , σ 2 ] R be a convex function on I such that ( σ 1 , σ 2 ) I and S L [ σ 1 , σ 2 ] . Then, for 0 σ 1 < σ 2 and ζ [ 0 , 1 ] the following fractional inequality holds true:
S μ + ν σ 1 + σ 2 2 1 α 2 ( 1 e ρ ) J μ + ν σ 1 α S ( μ + ν σ 2 ) + J μ + ν σ 2 + α S ( μ + ν σ 1 ) S ( μ + ν σ 1 ) + S ( μ + ν σ 2 ) S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 2 .
Proof. 
Let S : [ σ 1 , σ 2 ] R be a convex function. Then by hypothesis, we have
S μ + ν Υ 1 + Υ 2 2 = S μ + ν Υ 1 + μ + ν Υ 2 2 1 2 S ( μ + ν Υ 1 ) + S ( μ + ν Υ 2 ) .
Now, if we change the variables as
S ( μ + ν Υ 1 ) = ς ( μ + ν σ 1 ) + ( 1 ς ) ( μ + ν σ 2 ) ,
and
S ( μ + ν Υ 2 ) = ς ( μ + ν σ 2 ) + ( 1 ς ) ( μ + ν σ 1 )
in Equation (11), we have
S μ + ν σ 1 + σ 2 2 [ S ( ς ( μ + ν σ 1 ) + ( 1 ς ) ( μ + ν σ 2 ) ) + S ( ς ( μ + ν σ 2 ) + ( 1 ς ) ( μ + ν σ 1 ) ) ] 2 .
Multiplying both sides of the above Equation (12) by e 1 α α ( σ 2 σ 1 ) ς and then integrating the obtained result over [ 0 , 1 ] , we find that
1 e ρ ρ S μ + ν σ 1 + σ 2 2 1 2 ( σ 2 σ 1 ) μ + ν σ 2 μ + ν σ 1 e 1 α α ( u ( μ + ν σ 2 ) ) S ( u ) d u + μ + ν σ 2 μ + ν σ 1 e 1 α α ( ( μ + ν σ 1 ) u ) S ( u ) d u = α 2 ( σ 2 σ 1 ) J μ + ν σ 1 α S ( μ + ν σ 2 ) + J μ + ν σ 2 + α S ( μ + ν σ 1 ) ,
which readily yields
S μ + ν σ 1 + σ 2 2 1 α 2 ( 1 e ρ ) J μ + ν σ 1 α S ( μ + ν σ 2 ) + J μ + ν σ 2 + α S ( μ + ν σ 1 ) .
This leads us to the first part of the proof. Now, for the second part, we use the convexity of S , given as
S ( ς ( μ + ν σ 1 ) + ( 1 ς ) ( μ + ν σ 2 ) ) ς S ( μ + ν σ 1 ) + ( 1 ς ) S ( μ + ν σ 2 ) .
S ( ς ( μ + ν σ 2 ) + ( 1 ς ) ( μ + ν σ 1 ) ) ς S ( μ + ν σ 2 ) + ( 1 ς ) S ( μ + ν σ 1 ) .
Adding both the inequalities, we find that
S ( ς ( μ + ν σ 1 ) + ( 1 ς ) ( μ + ν σ 2 ) ) + S ( ς ( μ + ν σ 2 ) + ( 1 ς ) ( μ + ν σ 1 ) ) S ( μ + ν σ 1 ) + S ( μ + ν σ 2 ) S ( μ ) + S ( ν ) S ( σ 1 ) + S ( μ ) + S ( ν ) S ( σ 2 ) = 2 [ S ( μ ) + S ( ν ) ] [ S ( σ 1 ) + S ( σ 2 ) ] .
Multiplying both sides of the above Equation (13) by e 1 α α ( σ 2 σ 1 ) ς and then integrating over [ 0 , 1 ] , we have
0 1 e 1 α α ( σ 2 σ 1 ) ς S ( ς ( μ + ν σ 1 ) + ( 1 ς ) ( μ + ν σ 2 ) ) d ς     + 0 1 e 1 α α ( σ 2 σ 1 ) ς S ( ς ( μ + ν σ 2 ) + ( 1 ς ) ( μ + ν σ 1 ) ) d ς        2 [ S ( μ ) + S ( ν ) ] [ S ( σ 1 ) + S ( σ 2 ) ] 0 1 e 1 α α ( σ 2 σ 1 ) ς d ς .
It follows from the above developments that,
α 2 ( σ 2 σ 1 ) J μ + ν σ 1 α S ( μ + ν σ 2 ) + J μ + ν σ 2 + α S ( μ + ν σ 1 ) S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 2 1 α ( 1 e ρ ) ,
which readily yields
1 α 2 ( 1 e ρ ) J μ + ν σ 1 α S ( μ + ν σ 2 ) + J μ + ν σ 2 + α S ( μ + ν σ 1 ) S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 2 .
This leads us to the proof of the desired Theorem 4. □
Theorem 5.
Let S : I = [ σ 1 , σ 2 ] R be a convex function on I such that ( σ 1 , σ 2 ) I and S L [ σ 1 , σ 2 ] . Then, for 0 σ 1 < σ 2 and ζ [ 0 , 1 ] the following fractional inequality holds true:
S μ + ν σ 1 + σ 2 2    1 α 2 ( 1 e ρ 2 ) J μ + ν σ 1 + σ 2 2 α S ( μ + ν σ 2 ) + J μ + ν σ 1 + σ 2 2 + α S ( μ + ν σ 1 ) S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 2 .
Proof. 
Using the convexity of S on [ σ 1 , σ 2 ] , one has
S μ + ν Υ 1 + Υ 2 2 = S μ + ν Υ 1 + μ + ν Υ 2 2 S ( μ + ν Υ 1 ) + S ( μ + ν Υ 2 ) 2 .
If we let Υ 1 = ς 2 σ 1 + 2 ς 2 σ 2 and Υ 1 = ς 2 σ 2 + 2 ς 2 σ 1 , we have
2 S μ + ν σ 1 + σ 2 2     S μ + ν ς 2 σ 1 + 2 ς 2 σ 2 + S μ + ν ς 2 σ 2 + 2 ς 2 σ 1 .
If we multiply the above Equation (15) by e 1 α 2 α ( σ 2 σ 1 ) ς and then integrate the obtained inequality over [0, 1]
4 ( 1 e ρ 2 ) ρ S μ + ν σ 1 + σ 2 2 0 1 e 1 α 2 α ( σ 2 σ 1 ) ς S μ + ν ς 2 σ 1 + 2 ς 2 σ 2 d ς + 0 1 e 1 α 2 α ( σ 2 σ 1 ) ς S μ + ν ς 2 σ 2 + 2 ς 2 σ 1 d ς . 2 σ 2 σ 1 μ + ν σ 2 μ + ν σ 1 + σ 2 2 e 1 α α u ( μ + ν σ 2 ) S ( u ) d u + 2 σ 2 σ 1 μ + ν σ 1 + σ 2 2 μ + ν σ 1 e 1 α α ( μ + ν σ 1 ) u S ( u ) d u = 2 α σ 2 σ 1 J μ + ν σ 1 + σ 2 2 α S ( μ + ν σ 2 ) + J μ + ν σ 1 + σ 2 2 + α S ( μ + ν σ 1 ) .
It follows from the above developments that
S μ + ν σ 1 + σ 2 2 1 α 2 ( 1 e ρ 2 ) J μ + ν σ 1 + σ 2 2 α S ( μ + ν σ 2 ) + J μ + ν σ 1 + σ 2 2 + α S ( μ + ν σ 1 ) .
This leads us to the first part of the proof. Now, for the second part, we use the J–M inequality
S μ + ν ς 2 σ 1 + 2 ς 2 σ 2 + S μ + ν ς 2 σ 2 + 2 ς 2 σ 1 2 S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) .
If we multiply the above Equation (17) by e 1 α 2 α ( σ 2 σ 1 ) ς and then integrate the obtained result over [0, 1], we find
2 α σ 2 σ 1 J μ + ν σ 1 + σ 2 2 α S ( μ + ν σ 2 ) + J μ + ν σ 1 + σ 2 2 + α S ( μ + ν σ 1 ) 2 S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 0 1 e 1 α 2 α ( σ 2 σ 1 ) ς d ς . = 2 S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 2 ( 1 e ρ 2 ) ρ ,
from which readily follows
1 α 2 ( 1 e ρ 2 ) J μ + ν σ 1 + σ 2 2 α S ( μ + ν σ 2 ) + J μ + ν σ 1 + σ 2 2 + α S ( μ + ν σ 1 ) S ( μ ) + S ( ν ) S ( σ 1 ) + S ( σ 2 ) 2 .
Reorganizing Equations (16) and (18) completes the proof of Theorem 5. □

Pachpatte–Mercer-Type Fractional Inequality

In this section, we use a novel fractional operator to present an inequality that takes the product of two convex functions in the Jensen–Mercer settings.
Theorem 6.
Let S , Y : I = [ σ 1 , σ 2 ] R be convex functions on I such that ( σ 1 , σ 2 ) I with σ 1 < σ 2 and S Y L [ σ 1 , σ 2 ] . Then, for ζ [ 0 , 1 ] the following fractional inequality holds true:
α σ 2 σ 1 J μ + ν σ 1 α S Y ( μ + ν σ 2 ) + J μ + ν σ 2 + α S Y ( μ + ν σ 1 ) 2 ( 1 e ρ ) ρ M ( μ , ν ) + ρ 2 2 ρ + 4 ( ρ 2 + 2 ρ + 4 ) e ρ ρ 3 N 1 ( σ 1 , σ 2 ) + ρ 2 + e ρ ( ρ + 2 ) ρ 3 N 2 ( σ 1 , σ 2 ) 1 e ρ ρ K ( μ , ν , σ 1 , σ 2 ) .
where
N 1 ( σ 1 , σ 2 ) = S ( σ 1 ) Y ( σ 1 ) + S ( σ 2 ) Y ( σ 2 ) N 2 ( σ 1 , σ 2 ) = S ( σ 1 ) Y ( σ 2 ) + S ( σ 2 ) Y ( σ 1 ) M ( μ , ν ) = S ( μ ) Y ( μ ) + S ( ν ) Y ( ν ) + S ( μ ) Y ( ν ) + S ( ν ) Y ( μ ) , K ( μ , ν , σ 1 , σ 2 ) = S ( μ ) Y ( σ 1 ) + S ( ν ) Y ( σ 1 ) + S ( σ 1 ) Y ( μ ) + S ( σ 1 ) Y ( ν ) + S ( μ ) Y ( σ 2 ) + S ( ν ) Y ( σ 2 ) + S ( σ 2 ) Y ( μ ) + S ( σ 2 ) Y ( ν ) ,
Proof. 
Since S and Y are convex functions on [ σ 1 , σ 2 ] , ∀ ς [ 0 , 1 ] , σ 1 , σ 2 I , then using the Jensen–Mercer Inequality, we have
S μ + ν ς σ 2 + ( 1 ς ) σ 1 [ S ( μ ) + S ( ν ) ] ς S ( σ 2 ) + ( 1 ς ) S ( σ 1 ) ,
and
Y μ + ν ς σ 2 + ( 1 ς ) σ 1 [ Y ( μ ) + Y ( ν ) ] ς Y ( σ 2 ) + ( 1 ς ) Y ( σ 1 ) .
Now multiplying the above two inequalities, we find
S μ + ν ς σ 2 + ( 1 ς ) σ 1 Y μ + ν ς σ 2 + ( 1 ς ) σ 1 [ S ( μ ) Y ( μ ) + S ( μ ) Y ( ν ) + S ( ν ) Y ( μ ) + S ( ν ) Y ( ν ) ] ς [ S ( μ ) Y ( σ 2 ) + S ( ν ) Y ( σ 2 ) + S ( σ 2 ) Y ( μ ) + S ( σ 2 ) Y ( ν ) ] ( 2 ς ) [ S ( ν ) Y ( σ 1 ) + S ( μ ) Y ( σ 1 ) + S ( σ 1 ) Y ( ν ) + S ( σ 1 ) Y ( μ ) ] + ς ( 1 ς ) S ( σ 1 ) Y ( σ 2 ) + S ( σ 2 ) Y ( σ 1 ) + ς 2 S ( σ 2 ) Y ( σ 2 ) + ( 1 ς ) 2 S ( σ 1 ) Y ( σ 1 ) .
Similarly,
S μ + ν ς σ 1 + ( 1 ς ) σ 2 Y μ + ν ς σ 1 + ( 1 ς ) σ 2 [ S ( μ ) Y ( μ ) + S ( μ ) Y ( ν ) + S ( ν ) Y ( μ ) + S ( ν ) Y ( ν ) ] ς [ S ( μ ) Y ( σ 1 ) + S ( ν ) Y ( σ 1 ) + S ( σ 1 ) Y ( μ ) + S ( σ 1 ) Y ( ν ) ] ( 2 ς ) [ S ( ν ) Y ( σ 2 ) + S ( μ ) Y ( σ 2 ) + S ( σ 2 ) Y ( ν ) + S ( σ 2 ) Y ( μ ) ] + ς ( 1 ς ) S ( σ 2 ) Y ( σ 1 ) + S ( σ 1 ) Y ( σ 2 ) + ς 2 S ( σ 1 ) Y ( σ 1 ) + ( 1 ς ) 2 S ( σ 2 ) Y ( σ 2 ) .
Adding both the inequalities (19) and (20) and multiplying both sides by e 1 α 2 α ( σ 2 σ 1 ) ς , then integrating the obtained result over [0, 1], we find that
S μ + ν ς σ 2 + ( 1 ς ) σ 1 Y μ + ν ς σ 2 + ( 1 ς ) σ 1 0 1 e 1 α α ( σ 2 σ 1 ) ς d ς + S μ + ν ς σ 1 + ( 1 ς ) σ 2 Y μ + ν ς σ 1 + ( 1 ς ) σ 2 0 1 e 1 α α ( σ 2 σ 1 ) ς d ς 2 [ S ( μ ) Y ( μ ) + S ( μ ) Y ( ν ) + S ( ν ) Y ( μ ) + S ( ν ) Y ( ν ) ] 1 e ρ ρ S ( μ ) Y ( σ 1 ) + S ( ν ) Y ( σ 1 ) + S ( σ 1 ) Y ( μ ) + S ( σ 1 ) Y ( ν ) + S ( ν ) Y ( σ 2 ) + S ( μ ) Y ( σ 2 ) + S ( σ 2 ) Y ( ν ) + S ( σ 2 ) Y ( μ ) 1 e ρ ρ + S ( σ 2 ) Y ( σ 1 ) + S ( σ 1 ) Y ( σ 2 ) ρ 2 + e ρ ( ρ + 2 ) ρ 3 + [ S ( σ 1 ) Y ( σ 1 ) + S ( σ 2 ) Y ( σ 2 ) ] ρ 2 2 ρ + 4 ( ρ 2 + 2 ρ + 4 ) e ρ ρ 3 ,
from which readily follows
α σ 2 σ 1 J μ + ν σ 1 α S Y ( μ + ν σ 2 ) + J μ + ν σ 2 + α S Y ( μ + ν σ 1 ) 2 ( 1 e ρ ) ρ M ( μ , ν ) + ρ 2 2 ρ + 4 ( ρ 2 + 2 ρ + 4 ) e ρ ρ 3 N 1 ( σ 1 , σ 2 ) + ρ 2 + e ρ ( ρ + 2 ) ρ 3 N 2 ( σ 1 , σ 2 ) 1 e ρ ρ K ( μ , ν . σ 1 , σ 2 ) .
This leads us to the proof of the desired Theorem 6. □

4. New Fractional Inequalities of Dragomir–Agarwal–Mercer-Type

This section deals with proving a new identity for differentiable mappings that involve fractional integral operators with an exponential kernel. Then, taking this identity into account, we have established a Dragomir–Agarwal–Mercer-type inequality.
Lemma 1.
Let S : I = [ σ 1 , σ 2 ] R be a differentiable mapping on I such that ( σ 1 , σ 2 ) I and 0 σ 1 < σ 2 . If S L [ σ 1 , σ 2 ] . Then,
S μ + ν σ 1 + S μ + ν σ 2 2 1 α 2 ( 1 e ρ ) J μ + ν σ 1 α S ( μ + ν σ 2 ) + J μ + ν σ 2 + α S ( μ + ν σ 1 ) = σ 2 σ 1 2 ( 1 e ρ ) 0 1 e ρ ( 1 ς ) e ρ ς S ( μ + ν ( ς σ 1 + ( 1 ς ) σ 2 ) ) d ς ,
holds true for ζ [ 0 , 1 ] .
Proof. 
L e t I 1 = 0 1 e ρ ς S ( μ + ν ( ς σ 1 + ( 1 ς ) σ 2 ) ) d ς = e ρ ς S ( μ + ν σ 1 ) S ( μ + ν σ 2 ) σ 2 σ 1 + ρ α ( σ 2 σ 1 ) 2 J μ + ν σ 1 α S ( μ + ν σ 2 ) = e ρ ς S ( μ + ν σ 1 ) S ( μ + ν σ 2 ) σ 2 σ 1 + 1 α σ 2 σ 1 J μ + ν σ 1 α S ( μ + ν σ 2 ) .
and
I 2 = 0 1 e ρ ( 1 ς ) S ( μ + ν ( ς σ 1 + ( 1 ς ) σ 2 ) ) d ς = S ( μ + ν σ 1 ) e ρ S ( μ + ν σ 2 ) σ 2 σ 1 + ρ α ( σ 2 σ 1 ) 2 J μ + ν σ 2 + α S ( μ + ν σ 1 ) = S ( μ + ν σ 1 ) e ρ S ( μ + ν σ 2 ) σ 2 σ 1 1 α σ 2 σ 1 J μ + ν σ 2 + α S ( μ + ν σ 1 ) .
From the above developments, we have
I 2 I 1 = S ( μ + ν σ 1 ) e ρ S ( μ + ν σ 2 ) σ 2 σ 1 1 α σ 2 σ 1 J μ + ν σ 2 + α S ( μ + ν σ 1 ) e ρ S ( μ + ν σ 1 ) S ( μ + ν σ 2 ) σ 2 σ 1 + 1 α σ 2 σ 1 J μ + ν σ 1 α S ( μ + ν σ 2 ) = S ( μ + ν σ 1 ) e ρ S ( μ + ν σ 2 ) σ 2 σ 1 e ρ S ( μ + ν σ 1 ) S ( μ + ν σ 2 ) σ 2 σ 1 1 α σ 2 σ 1 J μ + ν σ 2 + α S ( μ + ν σ 1 ) 1 α σ 2 σ 1 J μ + ν σ 1 α S ( μ + ν σ 2 ) = ( 1 e ρ ) S ( μ + ν σ 1 ) + S ( μ + ν σ 2 ) σ 2 σ 1 1 α σ 2 σ 1 J μ + ν σ 2 + α S ( μ + ν σ 1 ) + J μ + ν σ 1 α S ( μ + ν σ 2 ) .
Multiplying both sides of the above equality by σ 2 σ 1 2 ( 1 e ρ ) , we obtain
S ( μ + ν σ 1 ) + S ( μ + ν σ 2 ) 2 1 α 2 ( 1 e ρ ) J μ + ν σ 2 + α S ( μ + ν σ 1 ) + J μ + ν σ 1 α S ( μ + ν σ 2 ) = σ 2 σ 1 2 ( 1 e ρ ) [ I 2 I 1 ] .
This leads us to the proof of Lemma 1. □
Theorem 7.
Let S : I = [ σ 1 , σ 2 ] R be a convex function on I such that ( σ 1 , σ 2 ) I with σ 2 > σ 1 and S L [ σ 1 , σ 2 ] . Then for ζ [ 0 , 1 ] , we have the following inequality:
S ( μ + ν σ 1 ) + S ( μ + ν σ 2 ) 2 1 α 2 ( 1 e ρ ) J μ + ν σ 2 + α S ( μ + ν σ 1 ) + J μ + ν σ 1 α S ( μ + ν σ 2 ) σ 2 σ 1 2 ( 1 e ρ ) 1 + e ρ 2 e ρ 2 ρ ( | S ( μ ) | + | S ( ν ) | ) | S ( σ 1 ) | + | S ( σ 2 ) | 2 .
Proof. 
Employing Lemma 1, using properties of modulus, the convexity of | S | , and the J–M inequality, we have
| S ( μ + ν σ 1 ) + S ( μ + ν σ 2 ) 2 1 α 2 ( 1 e ρ ) J μ + ν σ 2 + α S ( μ + ν σ 1 ) + J μ + ν σ 1 α S ( μ + ν σ 2 ) | = σ 2 σ 1 2 ( 1 e ρ ) 0 1 | e ρ ( 1 ς ) e ρ ς | | S ( μ + ν ( ς σ 1 + ( 1 ς ) σ 2 ) ) | d ς σ 2 σ 1 2 ( 1 e ρ ) 0 1 | e ρ ( 1 ς ) e ρ ς | | | S ( μ ) + S ( ν ) ( ς S ( σ 1 ) + ( 1 ς ) S ( σ 2 ) | ) d ς = σ 2 σ 1 2 ( 1 e ρ ) 0 1 2 ( e ρ ς e ρ ( 1 ς ) ) | S ( μ ) | + | S ( ν ) | ( ς | S ( σ 1 ) | + ( 1 ς ) | S ( σ 2 ) | ) d ς + σ 2 σ 1 2 ( 1 e ρ ) 1 2 1 ( e ρ ( 1 ς ) e ρ ς ) | S ( μ ) | + | S ( ν ) | ( ς | S ( σ 1 ) | + ( 1 ς ) | S ( σ 2 ) | ) d ς = σ 2 σ 1 2 ( 1 e ρ ) { ( | S ( μ ) | + | S ( ν ) | ) 0 1 2 ( e ρ ς e ρ ( 1 ς ) ) d ς | S ( σ 1 ) | 0 1 2 ( e ρ ς e ρ ( 1 ς ) ) ς d ς + | S ( σ 2 ) | 0 1 2 ( e ρ ς e ρ ( 1 ς ) ) ( 1 ς ) d ς } + σ 2 σ 1 2 ( 1 e ρ ) { ( | S ( μ ) | + | S ( ν ) | ) 1 2 1 ( e ρ ( 1 ς ) e ρ ς ) d ς | S ( σ 1 ) | 1 2 1 ( e ρ ( 1 ς ) e ρ ς ) ς d ς + | S ( σ 2 ) | 1 2 1 ( e ρ ( 1 ς ) e ρ ς ) ( 1 ς ) d ς } = σ 2 σ 1 2 ( 1 e ρ ) { ( | S ( μ ) | + | S ( ν ) | ) e ρ ( e ρ + 1 ) 2 e ρ 2 ρ { | S ( σ 1 ) | e ρ ( e ρ 1 ) ρ e ρ 2 ρ 2 + | S ( σ 2 ) | e ρ ( ( ρ 1 ) e ρ + ρ + 1 ) ρ e ρ 2 ρ 2 + ( | S ( μ ) | + | S ( ν ) | ) e ρ ( e ρ + 1 ) 2 e ρ 2 ρ | S ( σ 1 ) | e ρ ( ( ρ 1 ) e ρ + ρ + 1 ) ρ e ρ 2 ρ 2 + | S ( σ 2 ) | e ρ ( e ρ 1 ) ρ e ρ 2 ρ 2 = σ 2 σ 1 2 ( 1 e ρ ) 1 + e ρ 2 e ρ 2 ρ ( | S ( μ ) | + | S ( ν ) | ) | S ( σ 1 ) | + | S ( σ 2 ) | 2 .
This leads us to the desired inequality.  □

5. Applications

Example 1.
Let C n represent the set of n × n complex matrices, M n represent the algebra of n × n complex matrices, and M + n represent the strictly positive matrices in M . That is, A M n + for every nonzero u C n if A u , u > 0 .
Sababheh [53] proved that S ( κ ) = A κ X B 1 κ + A 1 κ X B κ , A , B M n + , X M n is convex for all κ [ 0 , 1 ] .
Then, by using Theorem 3, we have
A μ + ν σ 1 + σ 2 2 X B 1 μ + ν σ 1 + σ 2 2 + A 1 μ + ν σ 1 + σ 2 2 X B μ + ν σ 1 + σ 2 2 A μ X B 1 μ + A 1 μ X B μ + A ν X B 1 ν + A 1 ν X B ν 1 α 2 ( 1 e ρ 2 ) J σ 1 + α A σ 2 X B 1 σ 2 + A 1 σ 2 X B σ 2 + J σ 2 α A σ 1 X B 1 σ 1 + A 1 σ 1 X B σ 1 A μ X B 1 μ + A 1 μ X B μ + A ν X B 1 ν + A 1 ν X B ν A σ 1 + σ 2 2 X B 1 σ 1 + σ 2 2 + A 1 σ 1 + σ 2 2 X B σ 1 + σ 2 2 .
Example 2.
Under the assumption of the above example, if we consider Theorem 4, we have
A μ + ν σ 1 + σ 2 2 X B 1 μ + ν σ 1 + σ 2 2 + A 1 μ + ν σ 1 + σ 2 2 X B μ + ν σ 1 + σ 2 2 1 α 2 ( 1 e ρ 2 ) [ J μ + ν σ 1 α A μ + ν σ 2 X B 1 ( μ + ν σ 2 ) + A 1 ( μ + ν σ 2 ) X B μ + ν σ 2 + J μ + ν σ 2 + α A μ + ν σ 1 X B 1 ( μ + ν σ 1 ) + A 1 ( μ + ν σ 1 ) X B μ + ν σ 1 ] A μ X B 1 μ + A 1 μ X B μ + A ν X B 1 ν + A 1 ν X B ν A σ 1 X B 1 σ 1 + A 1 σ 1 X B σ 1 + A σ 2 X B 1 σ 2 + A 1 σ 2 X B σ 2 2 .
Example 3.
Under the assumption of the above example, if we consider Theorem 5, we have
A μ + ν σ 1 + σ 2 2 X B 1 μ + ν σ 1 + σ 2 2 + A 1 μ + ν σ 1 + σ 2 2 X B μ + ν σ 1 + σ 2 2 1 α 2 ( 1 e ρ 2 ) [ J μ + ν σ 1 + σ 2 2 α A μ + ν σ 2 X B 1 ( μ + ν σ 2 ) + A 1 ( μ + ν σ 2 ) X B μ + ν σ 2 + J μ + ν σ 1 + σ 2 2 + α A μ + ν σ 1 X B 1 ( μ + ν σ 1 ) + A 1 ( μ + ν σ 1 ) X B μ + ν σ 1 ] A μ X B 1 μ + A 1 μ X B μ + A ν X B 1 ν + A 1 ν X B ν A σ 1 X B 1 σ 1 + A 1 σ 1 X B σ 1 + A σ 2 X B 1 σ 2 + A 1 σ 2 X B σ 2 2 .

6. Conclusions

According to recent trends, integral inequalities are one of the most important research areas in the mathematical sciences. Using a novel generalized fractional operator with an exponential kernel, we have presented some new fractional integral inequalities in the context of the Jensen–Mercer inequality. We have also provided a new bound for differentiable convex mapping with the help of a new equality. It will be fascinating to see if we can apply the notions presented in this article to present inequalities in the setting of Jensen–Mercer on coordinates and interval-valued analysis.
We choose to conclude our present investigation by remarking that, in many recent publications, fractional-order analogs of various families of familiar integral inequalities have been routinely derived by using obviously trivial or redundant-parametric variations of widely known and extensively studied operators of fractional integrals and fractional derivatives (for details, see [54]).

Author Contributions

Conceptualization, S.K.S.; methodology, R.P.A., P.O.M. and B.K.; software, S.K.S. and P.O.M.; validation, R.P.A. and B.K.; formal analysis, R.P.A., P.O.M., K.N. and K.M.A.; investigation, S.K.S. and P.O.M.; resources, B.K., K.N. and K.M.A.; data curation, R.P.A. and B.K.; writing–original draft preparation, S.K.S., P.O.M. and B.K.; writing–review and editing, S.K.S.; supervision, P.O.M., B.K. and K.N.; project administration, S.K.S. and P.O.M.; funding acquisition, K.N. and K.M.A. All authors have read and agreed to the final version of the manuscript.

Funding

Taif University Researchers Supporting Project Number(TURSP-2020/217), Taif University, Taif, Saudi Arabia; the National Science, Research, and Innovation Fund (NSRF), Thailand.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

This Research was supported by Taif University Researchers Supporting Project Number(TURSP-2020/217), Taif University, Taif, Saudi Arabia and the National Science, Research, and Innovation Fund (NSRF), Thailand.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
H–HHermite–Hadamard
R–LRiemann–Liouville
J–MJensen–Mercer
H–H–MHermite–Hadamard–Mercer

References

  1. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  2. Baleanu, D.; Güvenç, Z.B.; Machado, J.T. (Eds.) New Trends in Nanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
  3. El Shaed, M. Fractional Calculus Model of Semilunar Heart Valve Vibrations. In Proceedings of the ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, 2–6 September 2003; International Mathematica Symposium: London, UK, 2003. [Google Scholar]
  4. Magin, R.L. Fractional Calculus in Bio-Engineering; Begell House Inc.: Danbury, CT, USA, 2006. [Google Scholar]
  5. Caputo, M. Modeling social and economic cycles. In Alternative Public Economics; Forte, F., Navarra, P., Mudambi, R., Eds.; Elgar: Cheltenham, UK, 2014. [Google Scholar]
  6. Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
  7. Atangana, A. Application of fractional calculus to epidemiology. In Fractional Dynamics; De Gruyter Open Poland: Warsaw, Poland, 2016; pp. 174–190. [Google Scholar]
  8. Axtell, M.; Bise, M.E. Fractional calculus application in control systems. In Proceedings of the IEEE Conference on Aerospace and Electronics, Dayton, OH, USA, 21–25 May 1990; pp. 563–566. [Google Scholar]
  9. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  10. Liu, K.; Wang, J.; O’Regan, D. On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions. J. Inequal. Appl. 2019, 2019, 27. [Google Scholar] [CrossRef]
  11. Mumcu, İ.; Set, E.; Akdemir, A.O.; Jarad, F. New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral. Numer. Methods Partial Differ. Equ. 2021, 1–12. [Google Scholar] [CrossRef]
  12. Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequl. Appl. 2020, 2020, 172. [Google Scholar] [CrossRef]
  13. Fernandez, A.; Mohammed, P.O. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Meth. Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
  14. Khan, T.U.; Khan, M.A. Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Math. 2020, 6, 23–38. [Google Scholar] [CrossRef]
  15. Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
  16. Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M. Hermite-Hadamard type inequalities involving k-fractional operator for ( h ¯ , m)-convex functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
  17. Ahmad, H.; Tariq, M.; Sahoo, S.K.; Askar, S.; Abouelregal, A.E.; Khedher, K.M. Refinements of Ostrowski Type Integral Inequalities Involving Atangana-Baleanu Fractional Integral Operator. Symmetry 2021, 13, 2059. [Google Scholar] [CrossRef]
  18. Liko, R.; Mohammed, P.O.; Kashuri, A.; Hamed, Y.S. Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators. Fractal Fract. 2022, 6, 131. [Google Scholar] [CrossRef]
  19. Kermausuor, S. Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions. Kragujevac J. Math. 2021, 45, 709–720. [Google Scholar] [CrossRef]
  20. Set, E.; Akdemir, A.O.; Çelik, B. On generalization of Fejér type inequalities via fractional integral operators. Filomat 2018, 32, 5537–5547. [Google Scholar] [CrossRef] [Green Version]
  21. Jensen, J.L.W.V. Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Math. 1905, 30, 175–193. [Google Scholar] [CrossRef]
  22. Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
  23. Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
  24. Alomari, M.; Darus, M.; Kirmaci, U.S. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comput. Math. Appl. 2010, 59, 225–232. [Google Scholar] [CrossRef] [Green Version]
  25. Xi, B.Y.; Qi, F. Some integral inequalities of Hermite–Hadamard type for convex functions with applications to means. J. Funct. Spaces. Appl. 2012, 2012, 980438. [Google Scholar] [CrossRef] [Green Version]
  26. Kirmaci, U.S.; Özdemir, M.E. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 153, 361–368. [Google Scholar] [CrossRef]
  27. Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
  28. Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Mathematics and Its Applications; East European Series; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 61. [Google Scholar]
  29. Mercer, A.M. A variant of Jensens inequality. J. Ineq. Pure and Appl. Math. 2003, 4, 73. [Google Scholar]
  30. Matkovic, A.; Pečarić, J. A variant of Jensens inequality of Mercers type for operators with applications. Linear Algebra Appl. 2016, 418, 551–564. [Google Scholar] [CrossRef] [Green Version]
  31. Cortez, M.J.V.; Hernandez, J.E.H. Una Variante de la desigualdad de Jensen-Mercer para funciones h-convexas y funciones de operadores h-convexas. Rev. Programa Mat. 2017, 4, 62–76. [Google Scholar]
  32. Kian, M.; Moslehian, M.S. Refinements of the operator Jensen-Mercer inequality. Electron. J. Linear Algebra. 2013, 26, 742–753. [Google Scholar]
  33. Baric, J.; Matkovic, A. Bounds for the normalized Jensen Mercer functional. J. Math. Inequal. 2009, 3, 529–541. [Google Scholar] [CrossRef] [Green Version]
  34. Anjidani, E. Jensen-Mercer Operator Inequalities Involving Superquadratic Functions. Mediterr. J. Math. 2018, 15, 31. [Google Scholar] [CrossRef]
  35. Anjidani, E.; Changalvaiy, M.R. Reverse Jensen-Mercer type operator inequalities. Electron. J. Linear Algebra 2016, 31, 87–99. [Google Scholar] [CrossRef] [Green Version]
  36. Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. 2009, 71, 2771–2779. [Google Scholar] [CrossRef]
  37. Ali, M.; Khan, A.R. Generalized integral Mercer’s inequality and integral means. J. Inequal. Spec. Funct. 2019, 10, 60–76. [Google Scholar]
  38. Kang, Q.; Butt, S.I.; Nazeer, W.; Nadeem, M.; Nasir, J.; Yang, H. New Variants of Hermite-Jensen-Mercer Inequalities Via Riemann-Liouville Fractional Integral Operators. J. Math. 2020, 2020, 4303727. [Google Scholar] [CrossRef]
  39. You, X.; Ali, M.A.; Budak, H.; Reunsumrit, J.; Sitthiwirattham, T. Hermite-Hadamard-Mercer-Type Inequalities for Harmonically Convex Mappings. Mathematics 2021, 9, 2556. [Google Scholar] [CrossRef]
  40. Khan, M.A.; Husain, Z.; Chu, Y.M. New estimates for Csiszár divergence and zipf–mandelbrot entropy via jensen–mercer’s inequality. Complexity 2020, 2020, 8928691. [Google Scholar]
  41. Butt, S.I.; Yousaf, S.; Asghar, A.; Khan, K.A.; Moradi, H.R. New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function. J. Funct. Spaces 2021, 2021, 5868326. [Google Scholar] [CrossRef]
  42. Butt, S.I.; Nadeem, M.; Qaisar, S.; Akdemir, A.O.; Abdeljawad, T. Hermite–Jensen–Mercer type inequalities for conformable integrals and related results. Adv. Differ. Equ. 2020, 2020, 501. [Google Scholar] [CrossRef]
  43. Öğülmüs, H.; Sarikaya, M.Z. Hermite-Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
  44. Butt, S.I.; Umar, M.; Khan, K.A.; Kashuri, A.; Emadifar, H. Fractional Hermite–Jensen–Mercer integral inequalities with respect to another function and application. Complexity 2021, 2021, 9260828. [Google Scholar] [CrossRef]
  45. Chu, H.H.; Rashid, S.; Hammouch, Z.; Chu, Y.M. New fractional estimates for Hermite-Hadamard-Mercer’s type inequalities. Alex. Eng. J. 2020, 59, 3079–3089. [Google Scholar] [CrossRef]
  46. Liu, J.B.; Butt, S.I.; Nasir, J.; Aslam, A.; Fahad, A.; Soontharanon, J. Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Math. 2022, 7, 2123–2141. [Google Scholar] [CrossRef]
  47. Vivas-Cortez, M.; Saleem, M.S.; Sajid, S.; Zahoor, M.S.; Kashuri, A. Hermite-Jensen-Mercer-Type Inequalities via Caputo-Fabrizio Fractional Integral for h-Convex Function. Fractal Fract. 2021, 5, 269. [Google Scholar] [CrossRef]
  48. Vivas-Cortez, M.; Awan, M.U.; Javed, M.Z.; Kashuri, A.; Noor, M.A.; Noor, K.I. Some new generalized κ-fractional Hermite-Hadamard-Mercer type integral inequalities and their applications. AIMS Math. 2022, 7, 3203–3220. [Google Scholar] [CrossRef]
  49. Butt, S.I.; Nasir, J.; Qaisar, S.; Abualnaja, K.M. k-Fractional Variants of Hermite-Mercer-Type Inequalities via Convexity with Applications. J. Funct. Spaces 2021, 2021, 5566360. [Google Scholar] [CrossRef]
  50. Abdeljawad, T.; Ali, M.A.; Mohammed, P.O.; Kashuri, A. On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Math. 2020, 5, 7316–7331. [Google Scholar] [CrossRef]
  51. Set, E.; Çelik, B.; Özdemir, M.E.; Aslan, M. Some new results on Hermite–Hadamard–Mercer-type inequalities using a general family of fractional integral operators. Fractal Fract. 2021, 5, 68. [Google Scholar] [CrossRef]
  52. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
  53. Sababheh, M. Convex functions and means of matrices. arXiv 2016, arXiv:1606.08099v1. [Google Scholar] [CrossRef] [Green Version]
  54. Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Sahoo, S.K.; Agarwal, R.P.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications. Symmetry 2022, 14, 836. https://doi.org/10.3390/sym14040836

AMA Style

Sahoo SK, Agarwal RP, Mohammed PO, Kodamasingh B, Nonlaopon K, Abualnaja KM. Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications. Symmetry. 2022; 14(4):836. https://doi.org/10.3390/sym14040836

Chicago/Turabian Style

Sahoo, Soubhagya Kumar, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, and Khadijah M. Abualnaja. 2022. "Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications" Symmetry 14, no. 4: 836. https://doi.org/10.3390/sym14040836

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop