Lax Operator Algebras and Applications to τ-Symmetries for Multilayer Integrable Couplings
Abstract
:1. Introduction
2. The Lie Algebra of Enlarged Vector Fields
3. The Algebraic Structure of Lax Operators
3.1. The Discrete Case
3.2. The Continuous Case
4. Application to the Volterra Lattice Hierarchy and the AKNS Hierarchy
4.1. The Case of the Volterra Lattice Hierarchy
4.2. The Case of the AKNS Hierarchy
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear Schröinger equation. J. Math. Phys. 1978, 19, 798–801. [Google Scholar] [CrossRef]
- Wadati, M.; Konno, K.; Ichikawa, Y.H. New integrable nonlinear evolution equations. J. Phys. Soc. Jpn. 1979, 47, 1698–1700. [Google Scholar] [CrossRef]
- Fokas, A.S.; Fuchssteiner, B. The hierarchy of the Benjamin-Ono equation. Phys. Lett. A 1981, 86, 341–345. [Google Scholar] [CrossRef]
- Alberty, T.M.; Koikawa, T.; Sasaki, R. Canonical structure of soliton equations I. Physics D 1982, 5, 43–65. [Google Scholar] [CrossRef]
- Boiti, M.; Pempinelli, F.; Tu, G.Z. The nonlinear evolution equations related to the Wadati-Konno-Ichikawa spectral problem. Prog. Theor. Phys. 1983, 69, 48–64. [Google Scholar] [CrossRef] [Green Version]
- Antonowicz, M.; Fordy, A.P. Coupled KdV equations with multi-Hamiltonian structures. Physics D 1987, 28, 345–357. [Google Scholar] [CrossRef]
- Antonowicz, M.; Fordy, A.P. Coupled Harry Dym equations with multi-Hamiltonian structures. J. Phys. A Math. Gen. 1988, 21, L269–L275. [Google Scholar] [CrossRef]
- Ma, W.X.; Fuchssteiner, B. Integrable theory of the perturbation equations. Chaos Solitons Fractals 1996, 7, 1227–1250. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X.; Fuchssteiner, B. The algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations. J. Math. Phys. 1999, 40, 2400–2418. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, M.; Correa, F.; Lara, K.; Pino, M. Integrable systems and spacetime dynamics. Phys. Rev. Lett. 2021, 127, 161601. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable couplings of vector AKNS soliton equations. J. Math. Phys. 2005, 46, 033507. [Google Scholar] [CrossRef]
- Ma, W.X.; Xu, X.X.; Zhang, Y.F. Semidirect sums of Lie algebras and discrete integrable couplings. J. Math. Phys. 2006, 47, 053501. [Google Scholar] [CrossRef]
- Xia, T.C.; Yu, F.J.; Chen, D.Y. The multi-component generalized Wadati-Konono-Ichikawa (WKI) hierarchy and its multi-component integrable couplings system with two arbitrary functions. Chaos Solitons Fractals 2005, 24, 877–883. [Google Scholar] [CrossRef]
- Guo, F.K.; Zhang, Y.F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J. Phys. A Math. Gen. 2005, 38, 8537–8548. [Google Scholar] [CrossRef]
- Yu, F.J.; Xia, T.C.; Zhang, H.Q. The multi-component TD hierarchy and its multi-component integrable coupling system with five arbitrary functions. Chaos Solitons Fractals 2006, 27, 1036–1041. [Google Scholar] [CrossRef]
- Sun, Y.P.; Tam, H.-W. A hierarchy of non-isospectral multi-component AKNS equations and its integrable couplings. Phys. Lett. A 2007, 370, 139–144. [Google Scholar] [CrossRef]
- Zhu, F.B.; Ji, J.; Zhang, J.B. Two hierarchies of multi-component Kaup-Newell equations and theirs integrable couplings. Phys. Lett. A 2008, 372, 1244–1249. [Google Scholar] [CrossRef]
- Luo, L.; Fan, E.G. The algebraic structure of discrete zero curvature equations associated with integrable couplings and application to enlarged Volterra systems. Sci. China Ser. A Math. 2009, 52, 147–159. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Fan, E.G. Coupling integrable couplings and bi-Hamiltonian structure associated with the Boiti-Pempinelli-Tu hierarchy. J. Math. Phys. 2010, 51, 083506. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H.W. Three kinds of coupling integrable couplings of the Korteweg-de Vries hierarchy of evolution equations. J. Math. Phys. 2010, 51, 043510. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhu, Z.N. Constructing nonlinear discrete integrable Hamiltonian couplings. Comput. Math. Appl. 2010, 60, 2601–2608. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Ma, W.X.; Fan, E.G. The algebraic structure of zero curvature representations associated with integrable couplings. Int. J. Mod. Phys. A 2008, 23, 1309–1325. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H.-W. Four Lie algebras associated with R6 and their applications. J. Math. Phys. 2010, 51, 093514. [Google Scholar] [CrossRef]
- Luo, L.; Ma, W.X.; Fan, E.G. An algebraic structure of zero curvature representations associated with coupled integrable couplings and applications to τ-symmetry algebras. Int. J. Mod. Phys. B 2011, 25, 3237–3252. [Google Scholar] [CrossRef] [Green Version]
- Tam, H.-W.; Zhang, Y.F. An integrable system and associated integrable models as well as Hamiltonian structures. J. Math. Phys. 2012, 53, 103508. [Google Scholar] [CrossRef]
- Ma, W.X. Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations. J. Math. Phys. 1992, 33, 2464–2476. [Google Scholar] [CrossRef]
- Ma, W.X. The algebraic structures of isospectral Lax operators and applications to integrable equations. J. Phys. A Math. Gen. 1992, 25, 5329–5343. [Google Scholar] [CrossRef]
- Ma, W.X. The algebraic structure of zero curvature representations and application to coupled KdV systems. J. Phys. A Math. Gen. 1993, 26, 2573–2582. [Google Scholar] [CrossRef]
- Zhang, D.J.; Chen, S.T. Symmetries for the Ablowitz-Ladik hierarchy: I. Four-potential case. Stud. Appl. Math. 2010, 125, 393–418. [Google Scholar] [CrossRef]
- Zhang, D.J.; Chen, S.T. Symmetries for the Ablowitz-Ladik hierarchy: II. Integrable discrete nonlinear Schrödinger equation and discrete AKNS hierarchy. Stud. Appl. Math. 2010, 125, 419–443. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, R.G. Adjoint symmetry constraints of multicomponent AKNS equations. Chin. Ann. Math. B 2002, 23, 373–384. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Zhang, D.J. Lie algebras and Hamiltonian structures of multi-component Ablowitz-Kaup-Newell-Segur hierarchy. J. Math. Phys. 2013, 54, 053508. [Google Scholar] [CrossRef]
- Ma, W.X.; Chen, M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A Math. Gen. 2006, 39, 10787–10801. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X. A discrete variational identity on semi-direct sums of Lie algebras. J. Phys. A Math. Theoret. 2007, 40, 15055–15069. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.S.; Zhu, G.C. New set of symmetries of the integrable equations, Lie algebra and nonisospectral evolution equations. Part II. AKNS system. J. Phys. A Math. Gen. 1986, 19, 3713–3725. [Google Scholar]
- Shen, S.F.; Li, C.X.; Jin, Y.Y.; Ma, W.X. Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling. J. Math. Phys. 2018, 59, 103503. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.F.; Li, C.X.; Jin, Y.Y.; Yu, S.M. Multi-component integrable couplings for the Ablowitz-Kaup-Newell-Segur and Volterra hierarchies. Math. Meth. Appl. Sci. 2015, 38, 4345–4356. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A new multi-component integrable coupling and its application to isospectral and nonisospectral problems. Commun. Nonlinear Sci. Numer. Simul. 2022, 105, 106075. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-X.; Ma, W.-X.; Shen, S.-F. Lax Operator Algebras and Applications to τ-Symmetries for Multilayer Integrable Couplings. Symmetry 2022, 14, 1185. https://doi.org/10.3390/sym14061185
Li C-X, Ma W-X, Shen S-F. Lax Operator Algebras and Applications to τ-Symmetries for Multilayer Integrable Couplings. Symmetry. 2022; 14(6):1185. https://doi.org/10.3390/sym14061185
Chicago/Turabian StyleLi, Chun-Xia, Wen-Xiu Ma, and Shou-Feng Shen. 2022. "Lax Operator Algebras and Applications to τ-Symmetries for Multilayer Integrable Couplings" Symmetry 14, no. 6: 1185. https://doi.org/10.3390/sym14061185
APA StyleLi, C. -X., Ma, W. -X., & Shen, S. -F. (2022). Lax Operator Algebras and Applications to τ-Symmetries for Multilayer Integrable Couplings. Symmetry, 14(6), 1185. https://doi.org/10.3390/sym14061185