Nonnegative Estimation of Variance Components for a Nested Three-Way Random Model
Abstract
:1. Introduction
2. Nested and Crossed Random Effects Model
3. Sums of Squares and Orthogonal Coefficient Matrices
4. Expectations of Sums of Squares
5. A Set of Linear Equations in Variance Components
6. Comparison of Three Sets of Variance Component Estimates
7. Discussion
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harville, D.A. Variance Component Estimation for the Unbalanced One-Way Random Classification—A Critique; ARL-69; Aerospace Research Laboratory: Dayton, OH, USA, 1969. [Google Scholar]
- Hill, B.M. Inference about variance components in the one-way model. J. Am. Stat. Assoc. 1965, 60, 806–825. [Google Scholar] [CrossRef]
- Hill, B.M. Correlated errors in the random model. J. Am. Stat. Assoc. 1967, 62, 1387–1400. [Google Scholar] [CrossRef]
- Searle, S.R.; Casella, G.; McCulloch, C.E. Variance Components; John Wiley and Sons: New York, NY, USA, 2009. [Google Scholar]
- Thompson, W.A. Negative estimates of variance components: An introduction. Bull. Int. Inst. Stat. 1961, 34, 1–4. [Google Scholar]
- Thompson, W.A. The problem of negative estimates of variance components. Ann. Math. Stat. 1962, 33, 273–289. [Google Scholar] [CrossRef]
- Thompson, W.A.; Moore, J.R. Non-negative estimates of variance components. Technometrics 1963, 5, 441–449. [Google Scholar] [CrossRef]
- Nelder, J.A. The interpretation of negative components of variance. Biometrika 1954, 41, 544–548. [Google Scholar] [CrossRef]
- Searle, S.R.; Fawcett, R.F. Expected mean squares in variance components models having finite populations. Biometrics 1970, 26, 243–254. [Google Scholar] [CrossRef]
- Choi, J. Nonnegative estimates of variance components in a two-way random model. Commun. Stat. Appl. Methods 2019, 26, 337–346. [Google Scholar] [CrossRef]
- Choi, J. Nonnegative variance component estimation for mixed-effects models. Commun. Stat. Appl. Methods 2020, 27, 523–533. [Google Scholar] [CrossRef]
- Milliken, G.A.; Johnson, D.E. Analysis of Messy Data Volume 1: Designed Experiments; Van Nostrand Reinhold: New York, NY, USA, 1984. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley and Sons: New York, NY, USA, 2013. [Google Scholar]
- Searle, S.R. Linear Models; John Wiley and Sons: New York, NY, USA, 1971. [Google Scholar]
- Khan, A.R.; Saleem, S.M.A.; Mehdi, H. Detection of edges using two-way nested design. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 136–144. [Google Scholar]
- Sharma, H.L. Nested balanced n-ary designs and their PB arrays. J. Reliab. Stat. Stud. 2014, 7, 29–36. [Google Scholar]
- Ferreira, S.S.; Ferreira, D.; Mexia, J.T. Double tier cross nesting design models. J. Interdiscip. Math. 2008, 11, 275–289. [Google Scholar] [CrossRef]
- Henderson, C.R. Estimation of variance and covariance components. Biometrics 1953, 9, 226–252. [Google Scholar] [CrossRef]
- Graybill, F.A. Matrices with Applications in Statistics; Wadsworth: Belmont, CA, USA, 1983. [Google Scholar]
- Johnson, D.W.; Wichern, R.A. Applied Multivariate Statistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Hartley, H.O. Expectations, variances and covariances of ANOVA means squares by “synthesis”. Biometrics 1967, 23, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, F.E. An approximate distribution of estimates of variance components. Biom. Bull. 1946, 2, 110–114. [Google Scholar] [CrossRef]
Variance Component | New Method | Analysis of Variance Method | Henderson’s Method III |
---|---|---|---|
59.417532 | 49.727005 | 48.806265 | |
35.050804 | 23.329973 | 24.254899 | |
9.142909 | −8.593521 | −4.877959 | |
37.360959 | 39.332304 | 35.616742 | |
4.983134 | 4.983134 | 4.983134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J. Nonnegative Estimation of Variance Components for a Nested Three-Way Random Model. Symmetry 2022, 14, 1210. https://doi.org/10.3390/sym14061210
Choi J. Nonnegative Estimation of Variance Components for a Nested Three-Way Random Model. Symmetry. 2022; 14(6):1210. https://doi.org/10.3390/sym14061210
Chicago/Turabian StyleChoi, Jaesung. 2022. "Nonnegative Estimation of Variance Components for a Nested Three-Way Random Model" Symmetry 14, no. 6: 1210. https://doi.org/10.3390/sym14061210
APA StyleChoi, J. (2022). Nonnegative Estimation of Variance Components for a Nested Three-Way Random Model. Symmetry, 14(6), 1210. https://doi.org/10.3390/sym14061210