Eximious Sandstorm Image Improvement Using Image Adaptive Ratio and Brightness-Adaptive Dark Channel Prior
Abstract
:1. Introduction
2. Related Work
3. Sandstorm Image Enhancement Using IAR and BADCP
3.1. Color-Channel Compensation Using IAR
3.2. Dehazeing Using the BADCP
3.3. Improving the Sandstorm Image
3.4. Summary of Proposed Method
Algorithm 1 The pseudo-code of the proposed method |
Input: Sandstorm image I Output: improved image J (1): Color compensation using (3). Obtain (2): Red channel compensation using (6). Obtain (3): Estimates the NC using (8). Obtain (4): Estimates the BADCP using (9). Obtatin (5): Estimate the transmission map using (10). Obtain (6): Estimates the refined transmission using (11). Obtain (7): Obtain the improved sandstorm image using (12). Obtain (8): Refined the image using (14) |
4. Experimental Results and Discussion
4.1. Subjective Comparison
4.1.1. Comparison of Color Corrections
4.1.2. Improved Image Comparison
4.2. Objective Comparison
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NIQE | Natural image quality evaluator |
UIQM | Underwater image quality measure |
DCP | Dark channel prior |
DAWN | Vehicle detection in adverse weather natural dataset |
References
- He, K.; Jian, S.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Meng, G.; Wang, Y.; Duan, J.; Xiang, S.; Pan, C. Efficient image dehazing with boundary constraint and contextual regularization. In Proceedings of the IEEE international conference on computer vision, Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Zhu, Q.; Mai, J.; Shao, L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar]
- YSchechner, Y.; Narasimhan, S.G.; Nayar, S.K. Instant dehazing of images using polarization. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1. [Google Scholar]
- Naseeba, T.; Binu, K.P.H. Visibility Restoration of Single Hazy Images Captured in Real-World Weather Conditions. Int. Res. J. Eng. Technol. 2016, 3, 135–139. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Chromatic framework for vision in bad weather. In Proceedings of the IEEE in Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), Hilton Head Island, SC, USA, 15 June 2000; Volume 1. [Google Scholar]
- Nayar, S.K.; Narasimhan, S.G. Vision in bad weather. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2. [Google Scholar]
- Al Ameen, Z. Visibility enhancement for images captured in dusty weather via tuned tri-threshold fuzzy intensification operators. Int. J. Intell. Syst. Appl. 2016, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Huo, J.Y.; Chang, Y.L.; Wang, J.; Wei, X.X. Robust automatic white balance algorithm using gray color points in images. IEEE Trans. Consum. Electron. 2003, 52, 541–546. [Google Scholar]
- Ancuti, C.; Ancuti, C.O.; Haber, T.; Bekaert, P. Enhancing underwater images and videos by fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Cheng, Y.; Jia, Z.; Lai, H.; Yang, J.; Kasabov, N.K. Blue channel and fusion for sandstorm image enhancement. IEEE Access 2020, 8, 66931–66940. [Google Scholar] [CrossRef]
- Thu, Q.H.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar]
- Shi, Z.; Feng, Y.; Zhao, M.; Zhang, E.; He, L. Normalised gamma transformation-based contrast-limited adaptive histogram equalisation with colour correction for sand-dust image enhancement. IET Image Process. 2020, 14, 747–756. [Google Scholar] [CrossRef]
- Gao, G.; Lai, H.; Jia, Z.; Liu, Y.; Wang, Y. Sand-dust image restoration based on reversing the blue channel prior. IEEE Photonics J. 2020, 12, 1–16. [Google Scholar] [CrossRef]
- Wang, J.; Pang, Y.; He, Y.; Liu, C. Enhancement for dust-sand storm images. In Proceedings of the International Conference on Multimedia Modeling, Miami, FL, USA, 4–6 January 2016; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Shi, Z.; Feng, Y.; Zhao, M.; Zhang, E.; He, L. Let you see in sand dust weather: A method based on halo-reduced dark channel prior dehazing for sand-dust image enhancement. IEEE Access 2019, 7, 116722–116733. [Google Scholar] [CrossRef]
- He, K.; Jian, S.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Jia, Z.; Lai, H.; Yang, J.; Kasabov, N.K. A fast sand-dust image enhancement algorithm by blue channel compensation and guided image filtering. IEEE Access 2020, 8, 196690–196699. [Google Scholar] [CrossRef]
- Wang, A.; Wang, W.; Liu, J.; Gu, N. AIPNet: Image-to-image single image dehazing with atmospheric illumination prior. IEEE Trans. Image Process. 2018, 28, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.H. Single image dehazing via multi-scale convolutional neural networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zhang, Y.; Bai, X.; Fan, R.; Wang, Z. Deviation-sparse fuzzy c-means with neighbor information constraint. IEEE Trans. Fuzzy Syst. 2018, 27, 185–199. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, F.; Pedrycz, W. Fuzzy C-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 2020, 87, 105928. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Preetham, A.J.; Shirley, P.; Smits, B. A practical analytic model for daylight. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 8–13 August 1999. [Google Scholar]
- Goldstein, E.B. Sensation and Perception; Wadsworth: Belmont, CA, USA, 1980. [Google Scholar]
- Fattal, R. Single image dehazing. ACM Trans. Graph. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Nayar, S.K.; Narasimhan, S.G. Vision and the atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar]
- Kenk, M.A.; Hassaballah, M. DAWN: Vehicle detection in adverse weather nature dataset. arXiv 2020, arXiv:2008.05402. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2018, 41, 541–551. [Google Scholar] [CrossRef]
He et al. [1] | Meng et al. [2] | Ren et al. [20] | Shi et al. [16] | Gao et al. [14] | Al Ameen [8] | Proposed Method | |
---|---|---|---|---|---|---|---|
19.797 | 18.729 | 19.701 | 19.652 | 19.700 | 19.607 | 17.901 | |
19.658 | 19.564 | 19.785 | 19.597 | 19.814 | 19.674 | 15.948 | |
21.064 | 20.739 | 20.951 | 21.400 | 21.855 | 21.975 | 16.728 | |
19.376 | 19.413 | 19.416 | 19.158 | 19.458 | 19.213 | 16.850 | |
18.558 | 16.992 | 18.074 | 18.163 | 18.954 | 18.193 | 15.920 | |
21.053 | 21.832 | 20.829 | 20.246 | 20.354 | 20.425 | 17.980 | |
19.414 | 19.165 | 19.424 | 19.238 | 19.659 | 19.586 | 18.135 | |
19.779 | 19.750 | 19.738 | 19.699 | 19.856 | 19.619 | 18.355 | |
19.631 | 19.633 | 19.642 | 19.521 | 19.605 | 19.615 | 19.107 | |
20.611 | 20.683 | 20.641 | 20.328 | 20.513 | 20.943 | 19.355 | |
AVG | 19.894 | 19.650 | 19.820 | 19.700 | 19.977 | 19.885 | 17.628 |
He et al. [1] | Meng et al. [2] | Ren et al. [20] | Shi et al. [16] | Gao et al. [14] | Al Ameen [8] | Proposed Method | |
---|---|---|---|---|---|---|---|
20.302 | 20.167 | 20.248 | 20.133 | 20.093 | 19.902 | 15.424 | |
20.202 | 20.102 | 20.130 | 19.812 | 19.901 | 19.515 | 18.621 | |
20.243 | 20.250 | 20.212 | 20.142 | 20.183 | 20.118 | 19.383 | |
19.045 | 18.976 | 19.038 | 19.219 | 18.994 | 18.811 | 15.752 | |
19.768 | 19.798 | 19.791 | 19.750 | 19.674 | 19.649 | 17.911 | |
19.419 | 19.446 | 19.448 | 19.233 | 19.390 | 19.223 | 16.836 | |
20.101 | 19.603 | 19.955 | 19.918 | 19.296 | 19.580 | 17.920 | |
19.378 | 19.756 | 19.331 | 18.787 | 18.565 | 19.207 | 16.970 | |
19.704 | 19.192 | 19.529 | 19.577 | 19.774 | 19.730 | 18.594 | |
19.914 | 19.936 | 19.950 | 19.218 | 18.943 | 19.677 | 16.411 | |
AVG | 19.808 | 19.723 | 19.763 | 19.579 | 19.481 | 19.541 | 17.382 |
He et al. [1] | Meng et al. [2] | Ren et al. [20] | Shi et al. [16] | Gao et al. [14] | Al Ameen [8] | Proposed Method | |
---|---|---|---|---|---|---|---|
AVG(20) | 19.851 | 19.686 | 19.792 | 19.639 | 19.729 | 19.713 | 17.505 |
AVG(323) | 19.863 | 19.698 | 19.892 | 19.714 | 19.931 | 19.803 | 17.839 |
He et al. [1] | Meng et al. [2] | Ren et al. [20] | Shi et al. [16] | Gao et al. [14] | Al Ameen [8] | Proposed Method | |
---|---|---|---|---|---|---|---|
0.579 | 0.908 | 0.779 | 0.702 | 0.603 | 0.582 | 1.469 | |
0.835 | 0.948 | 0.827 | 0.652 | 0.608 | 0.756 | 1.898 | |
1.159 | 1.358 | 1.194 | 1.120 | 0.949 | 1.209 | 1.737 | |
0.655 | 0.794 | 0.637 | 0.799 | 0.533 | 0.765 | 1.228 | |
1.216 | 1.478 | 1.337 | 1.293 | 0.961 | 1.313 | 1.597 | |
0.552 | 0.605 | 0.871 | 0.577 | 0.695 | 0.828 | 1.179 | |
0.748 | 1.134 | 0.817 | 0.959 | 0.440 | 0.900 | 1.578 | |
0.829 | 0.886 | 0.961 | 0.708 | 0.595 | 0.850 | 1.481 | |
0.566 | 0.547 | 0.549 | 0.808 | 0.485 | 0.930 | 1.151 | |
0.719 | 0.629s | 0.761 | 0.944 | 0.653 | 1.076 | 1.173 | |
AVG | 0.786 | 0.929 | 0.873 | 0.856 | 0.652 | 0.921 | 1.449 |
He et al. [1] | Meng et al. [2] | Ren et al. [20] | Shi et al. [16] | Gao et al [14] | Al Ameen [8] | Proposed Method | |
---|---|---|---|---|---|---|---|
0.888 | 0.910 | 0.951 | 1.070 | 0.927 | 1.205 | 1.936 | |
0.493 | 0.468 | 0.630 | 0.924 | 0.739 | 1.003 | 1.339 | |
0.418 | 0.434 | 0.553 | 0.693 | 0.502 | 0.823 | 1.107 | |
0.961 | 0.982 | 0.977 | 0.896 | 0.848 | 0.929 | 1.867 | |
0.664 | 0.630 | 0.574 | 0.611 | 0.572 | 0.699 | 1.504 | |
0.790 | 0.735 | 0.837 | 0.832 | 0.715 | 0.876 | 1.627 | |
0.778 | 1.240 | 1.018 | 0.925 | 1.127 | 0.963 | 1.575 | |
0.910 | 0.939 | 1.067 | 1.029 | 1.060 | 1.182 | 1.533 | |
0.574 | 0.755 | 0.737 | 0.940 | 0.690 | 0.866 | 1.669 | |
0.663 | 0.662 | 0.821 | 0.907 | 0.881 | 0.958 | 1.622 | |
AVG | 0.714 | 0.776 | 0.817 | 0.883 | 0.806 | 0.950 | 1.578 |
He et al. [1] | Meng et al. [2] | Ren et al. [20] | Shi et al. [16] | Gao et al. [14] | Al Ameen [8] | Proposed Method | |
---|---|---|---|---|---|---|---|
AVG(20) | 0.750 | 0.852 | 0.845 | 0.869 | 0.729 | 0.936 | 1.514 |
AVG(323) | 0.806 | 0.928 | 0.840 | 0.870 | 0.671 | 0.938 | 1.524 |
Category | Rain | Fog | Snow | Sand |
---|---|---|---|---|
Images | 200 | 300 | 204 | 323 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.S. Eximious Sandstorm Image Improvement Using Image Adaptive Ratio and Brightness-Adaptive Dark Channel Prior. Symmetry 2022, 14, 1334. https://doi.org/10.3390/sym14071334
Lee HS. Eximious Sandstorm Image Improvement Using Image Adaptive Ratio and Brightness-Adaptive Dark Channel Prior. Symmetry. 2022; 14(7):1334. https://doi.org/10.3390/sym14071334
Chicago/Turabian StyleLee, Ho Sang. 2022. "Eximious Sandstorm Image Improvement Using Image Adaptive Ratio and Brightness-Adaptive Dark Channel Prior" Symmetry 14, no. 7: 1334. https://doi.org/10.3390/sym14071334
APA StyleLee, H. S. (2022). Eximious Sandstorm Image Improvement Using Image Adaptive Ratio and Brightness-Adaptive Dark Channel Prior. Symmetry, 14(7), 1334. https://doi.org/10.3390/sym14071334