Formulation, Solution’s Existence, and Stability Analysis for Multi-Term System of Fractional-Order Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Main Result
Assumptions and Existence Results
4. Stability Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.P.; Lupulescu, V.; O’Regan, D.; Rahman, G. Fractional calculus and fractional differential equations in nonreflexive Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 2005, 20, 59–73. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Hristova, S.; Ciceke, M. Practical stability with respect to initial time difference for Caputo fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 106–120. [Google Scholar] [CrossRef]
- Jong, K.; Choi, H.; Ri, Y. Existence of positive solutions of a class of multi-point boundary value problems for p-Laplacian fractional differential equations with singular source terms. Commun. Nonlinear Sci. Numer. Simul. 2019, 72, 272–281. [Google Scholar] [CrossRef]
- Garrappa, R.; Kaslik, E. On initial conditions for fractional delay differential equations. Commun. Nonlinear Sci. Numer. Simul. 2020, 90, 105359. [Google Scholar] [CrossRef]
- Fallahgoul, H.; Focardi, S.; Fabozzi, F. Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 2011, 20, 763–769. [Google Scholar] [CrossRef]
- Carvalho, A.; Pinto, C.M. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dynam. Control 2017, 5, 168–186. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W. Finite-time synchronization of fractional-order complex-valued coupled systems. Phys. Stat. Mech. Its Appl. 2020, 549, 123903. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, G.; Li, C.; Kurths, J. Chaos synchronization in fractional differential systems. Philos. Trans. Soc. 2013, 371, 1990. [Google Scholar] [CrossRef]
- Ali, A.; Shah, K.; Khan, R.A. Numerical treatment for traveling wave solutions of fractional Whitham-Broer-Kaup equations. Alex. Eng. J. 2018, 57, 1991–1998. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Liu, L. Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions. Appl. Math. Comput. 2014, 244, 847–858. [Google Scholar] [CrossRef]
- Torres-Hernandez, A.; Brambila-Paz, F.; Torres-Martínez, C. Numerical solution using radial basis functions for multidimensional fractional partial differential equations of type Black–Scholes. Comput. Appl. Math. 2021, 40, 245. [Google Scholar] [CrossRef]
- Rehman, M.; Baleanu, D.; Alzabut, J.; Ismail, M.; Saeed, U. Green-Haar wavelets method for generalized fractional differential equations. Adv. Diff. Equ. 2020, 2020, 515. [Google Scholar] [CrossRef]
- Izadi, M.; Cattani, C. Generalized Bessel polynomial for multi-order fractional differential equations. Symmetry 2020, 12, 1260. [Google Scholar] [CrossRef]
- Tuan, H.T.; Thai, H.D.; Garrappa, R. An analysis of solutions to fractional neutral differential equations with delay. Commun. Nonlinear Sci. Numer. Simul. 2021, 10, 105854. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivatives (Theory and Applications); Taylor & Francis: Oxfordshire, UK, 1993. [Google Scholar]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2016. [Google Scholar]
- Abbas, S.; Benchohra, M.; Graef, J.R.; Henderson, J. Implicit Differential and Integral Equations: Existence and Stability; De Gruyter: London, UK, 2018. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Science Publishing: River Edge, NJ, USA, 2000. [Google Scholar]
- Haq, F.; Akram, M.; Shah, K.; Rahman, G. Study of new monotone iterative technique for a class of arbitrary order differential equations. Comput. Methods Differ. Equ. 2020, 8, 639–647. [Google Scholar]
- Shah, K.; Hussain, W. Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory. Numer. Funct. Anal. Optim. 2019, 40, 1355–1372. [Google Scholar] [CrossRef]
- Vu, H.; Van Hoa, N. Hyers-Ulam stability of fuzzy fractional Volterra integral equations with the kernel ψ-function via successive approximation method. Fuzzy Sets Syst. 2021, 419, 67–98. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Wu, Y. Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018, 2018, 24. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Khalil, H.; Khan, R.A. Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations. Chaos Solitons Fract. 2015, 77, 240–246. [Google Scholar] [CrossRef]
- Ali, G.; Shah, K.; Abdeljawad, T.; Khan, H.; Rahman, G.U.; Khan, A. On existence and stability results to a class of boundary value problems under Mittag-Leffler power law. Adv. Differ. Equ. 2020, 2020, 407. [Google Scholar] [CrossRef]
- Ali, G.; Shah, K.; Rahman, G.U. Existence of solution to a class of fractional delay differential equation under multi-points boundary conditions. Arab. J. Basic Appl. Sci. 2020, 27, 471–479. [Google Scholar] [CrossRef]
- Faizullah, F.; Bux, M.; Rana, M.A.; Rahman, G.U. Existence and stability of solutions to non-linear neutral stochastic functional differential equations in the framework of G-Brownian motion. Adv. Differ. Equ. 2017, 2017, 350. [Google Scholar] [CrossRef]
- Ahmad, I.; Shah, K.; Rahman, G.U.; Baleanu, D. Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations. Math. Methods Appl. Sci. 2020, 43, 8669–8682. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedia, A.; Alsulamia, M.; Ntouyasa, S.K. A study of a coupled system of nonlinear second-order ordinary differential equations with nonlocal integral multi-strip boundary conditions on an arbitrary domain. J. Comput. Anal. Appl. 2021, 29, 215–235. [Google Scholar]
- Ali, A.; Shah, K.; Li, Y. Topological degree theory and Ulam’s stability analysis of a boundary value problem of fractional differential equations. In Frontiers in Functional Equations and Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 2019; pp. 73–92. [Google Scholar]
- Ahmed, I.; Kuman, P.; Shah, K.; Borisut, P.; Sitthithakerngkiet, K.; Demba, M.A. Stability results for implicit fractional pantograph differential equations via ψ-Hilfer fractional derivative with a nonlocal Riemann–Liouville fractional integral condition. Mathematics 2020, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Ullah, A.; Nieto, J.J. Study of fractional order impulsive evolution problem under nonlocal Cauchy conditions. Math. Methods Appl. Sci. 2021, 44, 8516–8527. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 2008, 3, 2391–2396. [Google Scholar]
- Ahmad, B. Existence results for multi-point nonlinear boundary value problems for fractional differential equations. Mem. Differ. Equ. Math. Phys. 2010, 49, 83–94. [Google Scholar]
- Komarova, N.L.; Newell, A.C. Nonlinear dynamics of sand banks and sand waves. J. Fluid Mech. 2000, 415, 285–321. [Google Scholar] [CrossRef] [Green Version]
- Riecke, H. Self-trapping of traveling-wave pulses in binary mixture convection. Phys. Rev. Lett. 1992, 68, 301. [Google Scholar] [CrossRef]
- Ahmad, I.; Nieto, J.J.; Rahman, G.U.; Shah, K. Existence and stability for fractional order pantograph equations with nonlocal conditions. Electron. J. Differ. Equ. 2020, 2020, 1–16. [Google Scholar]
- Baleanu, D.; Etemad, S.; Mohammadi, H.; Rezapour, S. A novel modeling of boundary value problems on the glucose graph. Commun. Nonlinear Sci. Numer. Simul. 2021, 100, 105844. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, D.; Agarwal, R.P.; ur Rahman, G. Formulation, Solution’s Existence, and Stability Analysis for Multi-Term System of Fractional-Order Differential Equations. Symmetry 2022, 14, 1342. https://doi.org/10.3390/sym14071342
Ahmad D, Agarwal RP, ur Rahman G. Formulation, Solution’s Existence, and Stability Analysis for Multi-Term System of Fractional-Order Differential Equations. Symmetry. 2022; 14(7):1342. https://doi.org/10.3390/sym14071342
Chicago/Turabian StyleAhmad, Dildar, Ravi P. Agarwal, and Ghaus ur Rahman. 2022. "Formulation, Solution’s Existence, and Stability Analysis for Multi-Term System of Fractional-Order Differential Equations" Symmetry 14, no. 7: 1342. https://doi.org/10.3390/sym14071342
APA StyleAhmad, D., Agarwal, R. P., & ur Rahman, G. (2022). Formulation, Solution’s Existence, and Stability Analysis for Multi-Term System of Fractional-Order Differential Equations. Symmetry, 14(7), 1342. https://doi.org/10.3390/sym14071342