On Special Properties for Continuous Convex Operators and Related Linear Operators
Abstract
:1. Introduction
2. Methods
- (1)
- (2)
- (3)
- (4)
- (5)
3. Results
3.1. Uniform Boundedness for Families of Convex Operators and Related Consequences
3.2. A Constrained Minimization Problem Related to a Markov Moment Problem
- (a)
- there is a linear operator, such that
- (b)
- for any finite subsetand any the following implication holds true:
- (c)
- for alland for any finite subsetandwe have
- (a)
- there exists such that
- (b)
- for any finitesubsetand any, the following implication holds:
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; Oliver and Boyd: Edinburgh, UK, 1965. [Google Scholar]
- Berg, C.; Christensen, J.P.R.; Ressel, P. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions; Springer: New York, NY, USA, 1984. [Google Scholar]
- Krein, M.G.; Nudelman, A.A. Markov Moment Problem and Extremal Problems; American Mathematical Society: Providence, RI, USA, 1977. [Google Scholar]
- Schmüdgen, K. The Moment Problem. In Graduate Texts in Mathematics; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Schaefer, H.H.; Wolff, M.P. Topological Vector Spaces, 2nd ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Cristescu, R. Ordered Vector Spaces and Linear Operators; Academiei: Bucharest, Romania; Abacus Press: Tunbridge Wells, UK, 1976. [Google Scholar]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications. A Contemporary Approach, 2nd ed.; CMS Books in Mathematics; Springer: New York, NY, USA, 2018; Volume 23. [Google Scholar]
- Niculescu, C.; Popa, N. Elements of Theory of Banach Spaces; Academiei: Bucharest, Romania, 1981. (In Romanian) [Google Scholar]
- Yosida, K. Functional Analysis, 6th ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980. [Google Scholar]
- Neumann, M.M. Uniform boundedness and closed graph theorems for convex operators. Mat. Nachr. 1985, 120, 113–125. [Google Scholar] [CrossRef]
- Olteanu, O. Recent Results on Markov Moment Problem, Polynomial Approximation and Related Fields in Analysis; Generis Publishing: Chişinău, Republic of Moldova, 2020. [Google Scholar]
- Estrada, R.; Vindas, J. A Generalization of the Banach-Steinhaus Theorem for Finite Part Limits. Bull. Malays. Math. Sci. Soc. 2017, 40, 907–918. [Google Scholar] [CrossRef] [Green Version]
- Drábek, P. Properties of Linear and Nonlinear Operators. In Methods of Nonlinear Analysis; Birkhäuser Advanced Texts/Basler Lehrbücher; Birkhäuser Basel: Basel, Switzerland, 2007. [Google Scholar] [CrossRef]
- Liang, Z.X.; Zhang, Z.D.; Liu, W.M. Dynamics of a Bright Soliton in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential. Phys. Rev. Lett. 2005, 94, 050402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, A.-C.; Liu, W.M.; Song, J.L.; Zhou, F. Dynamical Creation of Fractionalized Vortices and Vortex Lattices. Phys. Rev. Lett. 2008, 101, 010402. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Z.; Malomed, B.A.; Mihalache, D.; Liu, W.M. Exact soliton solutions and nonlinear modulation instability in spinor Bose-Einstein condensates. Phys. Rev. 2005, A72, 033611. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.-S.; Hu, X.-H.; Hu, J.; Liu, W.M. Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity. Phys. Rev. 2010, A81, 025604. [Google Scholar] [CrossRef] [Green Version]
- Haviland, E.K. On the momentum problem for distributions in more than one dimension. Am. J. Math. 1936, 58, 164–168. [Google Scholar] [CrossRef]
- Kutateladze, S.S. Convex operators. Russ. Math. Surv. 1979, 34, 181–214. [Google Scholar] [CrossRef]
- Olteanu, O. Convexité et prolongement d’opérateurs linéaires (Convexity and extension of linear operators). C. R. Acad. Sci. Paris A 1978, 286, 511–514. [Google Scholar]
- Olteanu, O. Théorèmes de prolongement d’opérateurs linéaires (Theorems of extension of linear operators). Rev. Roumaine Math. Pures Appl. 1983, 28, 953–983. [Google Scholar]
- Olteanu, O. Application de théorèmes de prolongement d’opérateurs linéaires au problème des moments e à une generalization d’un théorème de Mazur-Orlicz, (Applications of theorems on extension of linear operators to the moment problem and to a generalization of Mazur-Orlicz theorem). C. R. Acad. Sci. Paris 1991, 313, 739–742. [Google Scholar]
- Niculescu, C.P.; Olteanu, O. From the Hahn-Banach extension theorem to the isotonicity of convex functions and the majorization theory. Rev. R. Acad. Cienc. Exactas Fis. Nat. 2020, 114, 171. [Google Scholar] [CrossRef]
- Olteanu, O. From Hahn-Banach type theorems to the Markov moment problem, sandwich theorems and further applications. Mathematics 2020, 8, 1328. [Google Scholar] [CrossRef]
- Olteanu, O. On Markov moment problem and related results. Symmetry 2021, 13, 986. [Google Scholar] [CrossRef]
- Olteanu, O. On Hahn-Banach theorem and some of its applications. Open Math. 2022, 20, 366–390. [Google Scholar] [CrossRef]
- Stoyanov, J.M.; Lin, G.D.; Kopanov, P. New checkable conditions for moment determinacy of probability distributions. SIAM Theory Probab. Appl. 2020, 65, 497–509. [Google Scholar] [CrossRef]
- Norris, D.T. Optimal Solutions to the L∞ Moment Problem with Lattice Bounds. Ph.D. Thesis, Department of Mathematics, College of Arts and Sciences, University Colorado Boulder, Boulder, CO, USA, 2002. [Google Scholar]
- Tagliani, A. Maximum entropy solutions and moment problem in unbounded domains. Appl. Math. Lett. 2003, 16, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Inverardi, P.L.N.; Tagliani, A. Stieltjies and Hamburger reduced moment problem when MaxEnt solution does not exist. Mathematics 2021, 9, 309. [Google Scholar] [CrossRef]
- Gosse, L.; Runborg, O. Resolution of the finite Markov moment problem. C. R. Acad. Sci. Paris 2005, 341, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Gosse, L.; Runborg, O. Existence, uniqueness, and a constructive solution algorithm for a class of finite Markov moment problems. SIAM J. Appl. Math. 2008, 68, 16181640. [Google Scholar] [CrossRef] [Green Version]
- Stochel, J. Solving the truncated moment problem solves the full moment problem. Glasg. Math. J. 2001, 43, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Olteanu, O.; Mihăilă, J.M. Extension and decomposition of linear operators dominated by continuous increasing sublinear operators. U.P.B. Sci. Bull. Ser. A 2018, 80, 133–144. [Google Scholar]
- Cobzaş, Ș. Geometric properties of Banach spaces and the existence of nearest and farthest points. Abstr. Appl. Anal. 2005, 2005, 259–285. [Google Scholar] [CrossRef] [Green Version]
- Cobzaş, Ș. Ekeland variational principle and its equivalents in T1 quasi-uniform spaces. Optimization 2022, 1–32. [Google Scholar] [CrossRef]
- Pakkaranang, N.; Kumam, P.; Cho, Y.J. Proximal point algorithms for solving convex minimization problem and common fixed points of asymptotically quasi-nonexpansive mappings in in CAT(0) spaces with convergenece analysis. Numer. Algorithms 2018, 78, 827–845. [Google Scholar] [CrossRef]
- Dong, Q.-L.; Cho, Y.J.; Rassias, T.M. The projection and contraction methods for finding common solutions for variational inequalitiy problems. Optim. Lett. 2018, 12, 1871–1896. [Google Scholar] [CrossRef]
- Sahu, D.R.; Cho, Y.J.; Dong, Q.L.; Kashyap, M.R.; Li, X.H. Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces. Numer. Algorithms 2021, 87, 1075–1095. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olteanu, O. On Special Properties for Continuous Convex Operators and Related Linear Operators. Symmetry 2022, 14, 1390. https://doi.org/10.3390/sym14071390
Olteanu O. On Special Properties for Continuous Convex Operators and Related Linear Operators. Symmetry. 2022; 14(7):1390. https://doi.org/10.3390/sym14071390
Chicago/Turabian StyleOlteanu, Octav. 2022. "On Special Properties for Continuous Convex Operators and Related Linear Operators" Symmetry 14, no. 7: 1390. https://doi.org/10.3390/sym14071390
APA StyleOlteanu, O. (2022). On Special Properties for Continuous Convex Operators and Related Linear Operators. Symmetry, 14(7), 1390. https://doi.org/10.3390/sym14071390