An Asymptotic Expansion for the Generalized Gamma Function
Abstract
:1. Introduction
2. An Asymptotic Expansion for
Some Bounds for the Function
3. Study of a CM Function Involving and Functions
Some Sharp Bounds for and Functions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1970. [Google Scholar]
- Cichon, J. Stiriling Approximation Formula. Available online: https://cs.pwr.edu.pl/cichon/Math/StirlingApp.pdf (accessed on 10 June 2022).
- Batir, N. Inequalities for the gamma function. Arch. Math. 2008, 91, 554–563. [Google Scholar] [CrossRef]
- Batir, N. An approximation formula for n! Proyecciones J. Math. 2013, 32, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.-N.; Qi, F. Sharp inequalities for the psi function and harmonic numbers. Anal.-Int. Math. J. Anal. Its Appl. 2014, 34, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Guo, B.-N. Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic. Adv. Appl. Math. 2010, 44, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Luo, Q.-M. Bounds for the ratio of two gamma functions: From Wendel’s asymptotic relation to Elezović-Giordano-Pečarić’s theorem. J. Inequalities Appl. 2013, 542, 20. [Google Scholar] [CrossRef] [Green Version]
- Alzer, H. On some inequalities for the gamma and psi function. Math. Comput. 1997, 66, 373–389. [Google Scholar] [CrossRef] [Green Version]
- Burić, T.; Elezović, N. Some completely monotonic functions related to the psi function. Math. Inequal. Appl. 2011, 14, 679–691. [Google Scholar]
- Qi, F.; Wang, S.-H. Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions. Glob. J. Math. Anal. 2014, 2, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Guo, S.; Guo, B.-N. Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 2010, 233, 2149–2160. [Google Scholar] [CrossRef] [Green Version]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Alzer, H.; Batir, N. Monotonicity properties of the gamma function. Appl. Math. Lett. 2007, 20, 778–781. [Google Scholar] [CrossRef] [Green Version]
- Batir, N. On some properties of the gamma function. Expo. Math. 2008, 26, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Sandor, J. Selected Chapters of Geometry, Analysis and Number Theory; RGMIA Monographs, Victoria University of Technology: Victoria, Australia, 2005. [Google Scholar]
- Krasniqi, V.; Shabani, A. Convexity properties and inequalities for a generalized gamma function. Appl. Math. E-Notes 2010, 10, 27–35. [Google Scholar]
- Krasniqi, V.; Merovci, F. Some completely monotonic properties for the (p, q)-gamma function. arXiv 2014, arXiv:1407.4231. [Google Scholar]
- Nantomah, K.; Prempeh, E.; Twum, S.B. On a (p, k)-analogue of the gamma function and some associated inequalities. Moroc. J. Pure Appl. Anal. 2016, 2, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Nantomah, K.; Merovci, F.; Nasiru, S. Some monotonicity properties and inequalities for the (p, k)-gamma function. Kragujev. J. Math. 2018, 42, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Tassaddiq, A.; Alriban, A. On Modification of the Gamma Function by Using Mittag-Leffler Function. J. Math. 2021, 2021, 9991762. [Google Scholar] [CrossRef]
- Goyal, R.; Agarwal, P.; Oros, G.I.; Jain, S. Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Function. Mathematics 2022, 10, 892. [Google Scholar] [CrossRef]
- Tassaddiq, A. A new representation of the extended k-gamma function with applications. Math. Methods Appl. Sci. 2021, 44, 11174–11195. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Almuashi, H.; Moustafa, H. An Asymptotic Expansion for the Generalized Gamma Function. Symmetry 2022, 14, 1412. https://doi.org/10.3390/sym14071412
Mahmoud M, Almuashi H, Moustafa H. An Asymptotic Expansion for the Generalized Gamma Function. Symmetry. 2022; 14(7):1412. https://doi.org/10.3390/sym14071412
Chicago/Turabian StyleMahmoud, Mansour, Hanan Almuashi, and Hesham Moustafa. 2022. "An Asymptotic Expansion for the Generalized Gamma Function" Symmetry 14, no. 7: 1412. https://doi.org/10.3390/sym14071412
APA StyleMahmoud, M., Almuashi, H., & Moustafa, H. (2022). An Asymptotic Expansion for the Generalized Gamma Function. Symmetry, 14(7), 1412. https://doi.org/10.3390/sym14071412