Sampling Techniques and Error Estimation for Linear Canonical S Transform Using MRA Approach
Abstract
:1. Introduction
- To develop a sampling theorem in the linear canonical S transform domain via the MRA approach.
- To introduce truncation and aliasing errors for sampling.
2. Preliminaries
2.1. Linear Canonical Transform (LCT)
2.2. Linear Canonical S Transform (LCST)
2.3. Notations and Definitions
- : denotes the space of absolutely integrable functions on
- : denotes the space of all square integral functions on
- : denotes the space of all square-summable sequences on .
- : represents the discrete signal.
- : represents the finite-dimensional Hilbert space, whose every basis is a Riesz basis.
- : denotes the characteristic function of a subset
2.4. Multiresolution Analysis
- (a)
- (b)
- (c)
- , where 0 is the zero element of
- (d)
- (e)
- There exists a function φ in , such that belongs to .
3. Sampling Theorem of LCST
4. Error Estimation
4.1. Truncation Error
4.2. Aliasing Error
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LCST | linear canonical S transform |
LCT | linear canonical transform |
ST | Stockwell transform |
References
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Assous, S.; Humeau, A.; Tartas, M.; Abraham, P.; L’Huillier, J. S-transform applied to laser Doppler flowmetry reactive hyperemia signals. IEEE Trans. Biomed. Eng. 2006, 53, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Livanos, G.; Ranganathan, N.; Jiang, J. Heart sound analysis using the S Transform. IEEE Comp. Cardiol. 2000, 27, 587–590. [Google Scholar]
- Dash, P.K.; Panigrahi, B.K.; Panda, G. Power quality analysis using S-transform. IEEE Trans. Power Del. 2003, 18, 406–411. [Google Scholar] [CrossRef]
- Fengzhan, Z.; Rengang, Y. Power-quality disturbance recogniion using S-transform. IEEE Trans. Power Del. 2007, 22, 944–950. [Google Scholar]
- Wei, Z.; Ran, T.; Yue, W. Linear canonical S transform. Chin. J. Elec. 2011, 20, 63–66. [Google Scholar]
- Bahria, M.; Toahab, S.; Landec, C. A generalized S-transform in linear canonical transform. J. Phys. 2019, 134, 062005. [Google Scholar] [CrossRef]
- Wang, Y.; Orchard, J. On the use of the Stockwell transform for image compression. In Proceedings of the Image processing: Algorithms and systems VII, San Jose, CA, USA, 10 February 2009; Volume 7245, pp. 33–39. [Google Scholar]
- Mallat, S.G. Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Amer. Math. Soc. 1989, 315, 69–87. [Google Scholar]
- Bhat, M.Y.; Dar, A.H. The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles. J. Anal. 2021, 30, 637–649. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Donoho Starks and Hardys Uncertainty Principles for the Shorttime Quaternion Offset Linear Canonical Transform. arXiv 2021, arXiv:2110.02754. [Google Scholar]
- Bhat, M.Y.; Dar, A.H. Convolution and Correlation Theorems for Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform. SIVP 2021, 16, 1235–1242. [Google Scholar] [CrossRef]
- Khan, W.A. Construction of generalized k-Bessel-Maitland function with its certain properties. J. Maths. 2021, 2021, 5386644. [Google Scholar] [CrossRef]
- Tariq, M.; Sahoo, S.K.; Nasir, J.; Aydi, H.; Alsamir, H. Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications. AIMS Math. 2021, 6, 13272–13290. [Google Scholar] [CrossRef]
- Ranjan, R.; Jindal, N.; Singh, A.K. Convolution theorem with its derivatives and multiresolution analysis for fractional S-transform. Circuits Syst. Signal Process. 2019, 38, 5212–5235. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Sha, X.; Zhang, Q.; Zhang, N. A sampling theorem for fractional wavelet transform with error estimates. IEEE Trans. Signal Process. 2017, 65, 4797–4811. [Google Scholar] [CrossRef]
- Ranjan, R.; Jindal, N.; Singh, A.K. A sampling theorem with error estimation for S-transform. Integral Transform. Spec. Funct. 2019, 30, 1–21. [Google Scholar] [CrossRef]
- Shi, J.; Chi, Y.; Zhang, N. Multichannel sampling and reconstruction of bandlimited signals in fractional Fourier domain. IEEE Signal Process. Lett. 2010, 17, 909–912. [Google Scholar]
- Huo, H.; Sun, W. Sampling theorems and error estimates for random signals in the linear canonical transform domain. Signal Process. 2015, 111, 31–38. [Google Scholar] [CrossRef]
- Zhang, Z. Sampling theorem for the short-time linear canonical transform and its applications. Signal Process. 2015, 113, 138–146. [Google Scholar] [CrossRef]
- Zayed, A.; Sun, W. Sampling theorem for two dimensional fractional Fourier transform. Signal Process. 2021, 181, 107902. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Multiresolution analysis for linear canonical S transform. Adv. Opr. Theory 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Sha, X.; Zhang, N. Sampling and reconstruction of signals in function spaces associated with the linear canonical transform. IEEE Trans. Signal Process. 2012, 60, 6041–6047. [Google Scholar]
- Bahri, M. Two uncertainty principles related to the linear canonical S-transform. J. Phys. Conf. Ser. 2019, 1341, 062006. [Google Scholar] [CrossRef]
- Zhuo, Z.H. Poisson summation formulae associated with special affine Fourier transform and offset Hilbert transform. Math. Probl. Eng. 2017, 2017, 1354129. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, M.Y.; Alnssyan, B.; Dar, A.H.; Dar, J.G. Sampling Techniques and Error Estimation for Linear Canonical S Transform Using MRA Approach. Symmetry 2022, 14, 1416. https://doi.org/10.3390/sym14071416
Bhat MY, Alnssyan B, Dar AH, Dar JG. Sampling Techniques and Error Estimation for Linear Canonical S Transform Using MRA Approach. Symmetry. 2022; 14(7):1416. https://doi.org/10.3390/sym14071416
Chicago/Turabian StyleBhat, Mohammad Younus, Badr Alnssyan, Aamir H. Dar, and Javid G. Dar. 2022. "Sampling Techniques and Error Estimation for Linear Canonical S Transform Using MRA Approach" Symmetry 14, no. 7: 1416. https://doi.org/10.3390/sym14071416
APA StyleBhat, M. Y., Alnssyan, B., Dar, A. H., & Dar, J. G. (2022). Sampling Techniques and Error Estimation for Linear Canonical S Transform Using MRA Approach. Symmetry, 14(7), 1416. https://doi.org/10.3390/sym14071416