Sufficiency for Weak Minima in Optimal Control Subject to Mixed Constraints
Abstract
:1. Introduction
2. An Auxiliary Theorem
- A process solves if it is admissible and for all admissible processes . An admissible process is a weak minimum of if it is a minimum of I relative to the norm
- For all , define the augmented Hamiltonian byIf and are given, set, for all ,
- The second variation of J with respect to in the direction , is given by
- Let
- DefineFinally, if is given, denote byThe set is the cone of critical directions with respect to .
- (i)
- .
- (ii)
- for all .
- (iii)
- .
- (iv)
- for all , .
- (v)
- admissible with implies that .
3. The Principal Result
- (i)
- is an admissible process of if and only if is a feasible process of and .
- (ii)
- If is an admissible process of , then
- (iii)
- If solves , then solves .
- (i)
- .
- (ii)
- for all .
- (iii)
- .
- (iv)
- for all , .
- (v)
- admissible with implies that .
4. Supplementary Lemmas
5. Proof of Theorem 1
- i.
- .
- ii.
- .
6. Discussion Part
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dmitruk, A.V. Quadratic conditions for the Pontryagin minimum in an optimal control problem linear with respect to the control. I. Decoding theorem. Math. USSR Izv. 1987, 28, 275–303. [Google Scholar] [CrossRef]
- Tröltzsch, F. Optimal Control of Partial Differential Equations. Theory, Methods and Applications; Translated from the 2005 German Original by Jürgen Sprekels; Graduate Studies in Mathematics, 112; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Alt, W.; Felgenhauer, U.; Seydenschwanz, M. Euler discretization for a class of nonlinear optimal control problems with control appearing linearly. Comput. Optim. Appl. 2018, 69, 825–856. [Google Scholar] [CrossRef]
- Osmolovskii, N.P.; Veliov, V.M. Metric sub-regularity in optimal control of affine problems with free end state. ESAIM Control. Optim. Calc. Var. 2020, 26, 47. [Google Scholar] [CrossRef]
- Sánchez Licea, G. Sufficiency for purely essentially bounded optimal controls. Symmetry 2020, 12, 238. [Google Scholar] [CrossRef]
- Sánchez Licea, G. Weak measurable optimal controls for the problems of Bolza. Mathematics 2021, 9, 191. [Google Scholar] [CrossRef]
- Maurer, H.; Oberle, H.J. Second order sufficient conditions for optimal control problems with free final time: The Riccati approach. SIAM J. Control Optim. 2002, 41, 380–403. [Google Scholar] [CrossRef]
- Maurer, H.; Pickenhain, S. Second order sufficient conditions for control problems with mixed control-state constraints. J. Optim. Theory Appl. 1995, 86, 649–667. [Google Scholar] [CrossRef]
- Rosenblueth, J.F. Variational conditions and conjugate points for the fixed-endpoint control problem. IMA J. Math. Control. Inf. 1999, 16, 147–163. [Google Scholar] [CrossRef]
- Hestenes, M.R. Calculus of Variations and Optimal Control Theory; John Wiley: New York, NY, USA, 1966. [Google Scholar]
- Loewen, P.D. Second-order sufficiency criteria and local convexity for equivalent problems in the calculus of variations. J. Math. Anal. Appl. 1990, 146, 512–522. [Google Scholar] [CrossRef]
- Malanowski, K. Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control. Optim. 1997, 35, 205–227. [Google Scholar] [CrossRef]
- Malanowski, K.; Maurer, H.; Pickenhain, S. Second order sufficient conditions for state-constrained optimal control problems. J. Optim. Theory Appl. 2004, 123, 595–617. [Google Scholar] [CrossRef]
- Maurer, H. First and second order sufficient optimality conditions in mathematical programming and optimal control. In Mathematical Programming at Oberwolffach; Springer: Berlin/Heidelberg, Germany, 1981; Volume 14, pp. 163–177. [Google Scholar]
- Maurer, H.; Pickenhain, S. Sufficient conditions and sensitivity analysis for economic control problems. Ann. Oper. Res. 1999, 88, 3–14. [Google Scholar] [CrossRef]
- McShane, E.J. Sufficient conditions for a weak relative minimum in the problem of Bolza. Trans. Am. Math. Soc. 1942, 52, 344–379. [Google Scholar] [CrossRef]
- Milyutin, A.A.; Osmolovskii, N.P. Calculus of Variations and Optimal Control; American Mathematical Society: Providence, RI, USA, 1998. [Google Scholar]
- Osmolovskii, N.P. Second order sufficient conditions for an extremum in optimal control. Control Cybern. 2002, 31, 803–831. [Google Scholar]
- Osmolovskii, N.P. Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints. ESAIM Control. Optim. Calc. Var. 2012, 18, 452–482. [Google Scholar] [CrossRef]
- Rosenblueth, J.F. Systems with time delays in the calculus of variations: A variational approach. IMA J. Math. Control Inf. 1988, 5, 125–145. [Google Scholar] [CrossRef]
- Rosenblueth, J.F.; Sánchez Licea, G. A direct sufficiency proof for a weak minimum in optimal control. Appl. Math. Sci. 2010, 4, 253–269. [Google Scholar]
- Sánchez Licea, G. Sufficiency for essentially bounded controls which do not satisfy the strengthened Legendre Clebsch-condition. Appl. Math. Sci. 2018, 12, 1297–1315. [Google Scholar]
- Sánchez Licea, G. Relaxing strengthened Legendre-Clebsch condition. SIAM J. Control Optim. 2013, 51, 3886–3902. [Google Scholar] [CrossRef]
- Sánchez Licea, G. A straightforward sufficiency proof for a nonparametric problem of Bolza in the calculus of variations. Axioms 2022, 11, 55. [Google Scholar] [CrossRef]
- Sánchez Licea, G. A singular solution in an economic model of population growth. Int. J. Math. Anal. 2016, 10, 1189–1196. [Google Scholar] [CrossRef]
- Aquino, P.G.P.; de Pinho, M.D.R.; Silva, G.N. Necessary optimality conditions for minimax optimal control problems with mixed constraints. ESAIM COCV 2021, 10, 1189–1196. [Google Scholar] [CrossRef]
- Becerril, J.A.; de Pinho, M.D.R. Optimal control problems with nonregular mixed constraints: An optimization approach. SIAM J. Control Optim. 2021, 59, 2093–2120. [Google Scholar] [CrossRef]
- Boccia, A.; de Pinho, M.D.R.; Vinter, R.B. Optimal control problems with mixed and pure state constraints. SIAM J. Control. Optim. 2016, 54, 3061–3083. [Google Scholar] [CrossRef]
- Biswas, M.H.A.; de Pinho, M.D.R. A maximum principle for optimal control problems with state and mixed constraints. ESAIM COCV 2015, 72, 939–957. [Google Scholar] [CrossRef]
- Clarke, F.H. Functional Analysis, Calculus of Variations and Optimal Control; Springer: London, UK, 2013. [Google Scholar]
- de Pinho, M.D.R.; Loewen, P.D.; Silva, G.N. A weak maximum principle for optimal control problems with nonsmooth mixed constraints. Set Valued Anal. 2009, 17, 203–221. [Google Scholar] [CrossRef]
- Rosenblueth, J.F. Equality-Inequality mixed constraints in optimal control. Int. J. Math. Anal. 2009, 3, 1369–1387. [Google Scholar]
- de Pinho, M.D.R.; Rosenblueth, J.F. Mixed constraints in optimal control: An implicit function theorem approach. IMA J. Math. Control Inf. 2007, 24, 197–218. [Google Scholar] [CrossRef]
- Rosenblueth, J.F. A direct approach to second order conditions for mixed equality constraints. J. Math. Anal. Appl. 2007, 333, 770–779. [Google Scholar] [CrossRef]
- Rosenblueth, J.F. Admissible variations for optimal control problems with mixed constraints. WSEAS Trans. Syst. 2005, 2204–2211. [Google Scholar]
- Zeidan, V.M. The Riccati equation for optimal control problems with mixed state-control constraints: Necessity and Sufficiency. SIAM J. Control Optim. 1994, 32, 5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licea, G.S. Sufficiency for Weak Minima in Optimal Control Subject to Mixed Constraints. Symmetry 2022, 14, 1520. https://doi.org/10.3390/sym14081520
Licea GS. Sufficiency for Weak Minima in Optimal Control Subject to Mixed Constraints. Symmetry. 2022; 14(8):1520. https://doi.org/10.3390/sym14081520
Chicago/Turabian StyleLicea, Gerardo Sánchez. 2022. "Sufficiency for Weak Minima in Optimal Control Subject to Mixed Constraints" Symmetry 14, no. 8: 1520. https://doi.org/10.3390/sym14081520
APA StyleLicea, G. S. (2022). Sufficiency for Weak Minima in Optimal Control Subject to Mixed Constraints. Symmetry, 14(8), 1520. https://doi.org/10.3390/sym14081520