Statistical Convergence of Δ-Spaces Using Fractional Order
Abstract
:1. Introduction
2. Main Results
- 1.
- If and is any complex number, then .
- 2.
- If and , then .
3. New Statistical Convergence Using Modulus Function
- iff ,
- for all ,
- is a continuous function from the right at
- is increasing function.
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zygmund, A. Trigonometric Series, 3rd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Steinhaus, H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 1951, 2, 73–74. [Google Scholar]
- Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [Google Scholar] [CrossRef]
- Schoenberg, I.J. The integrability of certain functions and related summability methods. Amer. Math. Mon. 1959, 66, 361–375. [Google Scholar] [CrossRef]
- Miller, H.I. A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 1995, 347, 1811–1819. [Google Scholar] [CrossRef]
- Dokuyucua, M.A.; Dutta, H. A fractional order model for Ebola Virus with the new Caputo fractional derivative without singular kernel. Chaos Solitons Fractals 2020, 134, 109717. [Google Scholar] [CrossRef]
- Singh, A.; Ganie, A.H.; Albaidani, M.M. Some new inequalities using nonintegral notion of variables. Adv. Math. Phys. 2021, 2021, 8045406. [Google Scholar] [CrossRef]
- Connor, J.; Kline, J. On statistical limit points and the consistency of statistical convergence. J. Math. Anal. Appl. 1996, 197, 393–399. [Google Scholar] [CrossRef]
- Aral, N.D.; Kandemir, Ş.H.; Et, M. Δα-deferred statistical convergence of fractional order. AIP Conf. Proc. 2021, 2334, 6. [Google Scholar]
- Burgin, M.; Duman, O. Statistical convergence and convergence in statistics. arXiv 2006, arXiv:math/0612179. [Google Scholar] [CrossRef]
- Connor, J.; Swardson, M.A. Strong integral summability and the Stone-Chech compactification of the half-line. Pac. J. Math. 1993, 157, 201–224. [Google Scholar] [CrossRef]
- Duman, O.; Khan, M.K.; Orhan, C. A-Statistical convergence of approximating operators. Math. Inequal. Appl. 2003, 6, 689–699. [Google Scholar] [CrossRef]
- Maddox, I.J. Statistical convergence in a locally convex space. Math. Proc. Camb. Philos. Soc. 1988, 104, 141–145. [Google Scholar] [CrossRef]
- Işik, M.; Altin, Y.; Et, M. Some properties of the sequence space . J. Inequalities Appl. 2013, 305. [Google Scholar] [CrossRef]
- Temizsu, F.; Et, M. Some results on generalizations of statistical boundedness. Math. Methods Appl. Sci. 2020, 44, 7471–7478. [Google Scholar] [CrossRef]
- Akbas, K.E.; Işık, M. On asymptotically λ-statistical equivalent sequences of order α in probability. Filomat 2020, 34, 4359–4365. [Google Scholar] [CrossRef]
- Altin, Y.; Altinok, H.; Çolak, R. Statistical convergence of order α for differnece sequences. Quaest. Math. 2015, 38, 505–514. [Google Scholar] [CrossRef]
- Aral, N.D.; Et, M. Generalized differnece sequence spaces of fractional order defined by Orlicz functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 941–951. [Google Scholar] [CrossRef]
- Çinar, M.; Karakaş, M.; Et, M. On the statistical convergence of (λ,μ) type in paranormed spaces. J. Interdiscip. Math. 2021, 25, 323–334. [Google Scholar] [CrossRef]
- Çinar, M.; Karakaş, M.; Et, M. Some geometric properties of the metric space V[λ,p]. J. Inequalities Appl. 2013, 28, 1–7. [Google Scholar]
- Çinar, M.; Karakas, M.; Et, M. On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory Appl. 2013, 33, 1687–1812. [Google Scholar] [CrossRef]
- Dutta, H.; Rhoades, B. (Eds.) Current Topics in Summability Theory and Applications; Springer Singapore: Puchong, Malaysia, 2016. [Google Scholar] [CrossRef]
- Esi, A.; Isik, M. Some generalized difference sequence spaces. Thai J. Math. 2012, 3, 241–247. [Google Scholar]
- Et, M. On some generalized deferred Cesàro means of order β. Math. Methods Appl. Sci. 2021, 44, 7433–7441. [Google Scholar] [CrossRef]
- Et, M.; Esi, A. On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull. Malays. Math. Sc. Soc. 2000, 23, 25–32. [Google Scholar]
- Et, M.; Çolak, R. On some generalized difference sequence spaces. Soochow J. Math. 1995, 21, 377–386. [Google Scholar]
- Et, M.; Nuray, F. Δm-statistical convergence. Indian J. Pure Appl. Math. 2001, 32, 961–969. [Google Scholar]
- Fathima, D.; Ganie, A.H. On some new scenario of Δ-spaces. J. Nonlinear Sci. Appl. 2021, 14, 163–167. [Google Scholar] [CrossRef]
- Fathima, D.; Albaidani, M.M.; Ganie, A.H.; Akhter, A. New structure of Fibonacci numbers using concept of Δ-operator. J. Math Comput Sci. 2022, 26, 101–112. [Google Scholar] [CrossRef]
- Ganie, A.H. New spaces over modulus function. Bol. da Soc. Parana. de Mat. 2022, 1–6, in press. [Google Scholar]
- Ganie, A.H. Some new approach of spaces of non-integral order. J. Nonlinear Sci. Appl. 2021, 14, 89–96. [Google Scholar] [CrossRef]
- Ganie, A.H.; Antesar, A. Certain sequence spaces using Δ-operator. Adv. Stud. Contemp. Math. 2020, 30, 17–27. [Google Scholar]
- Ganie, A.H.; Lone, S.A.; Akhter, A. Generalised Cesaro difference sequence space of non- absolute type. EKSAKTA 2020, 1, 147–153. [Google Scholar]
- Mursaleen, M. λ-statistical convergence. Math. Slovaca 2000, 50, 111–115. [Google Scholar]
- Mursaleen, M.; Debnath, S.; Rakshit, D. I-Statistical Limit Superior and I- Statistical Limit Inferior. Filomat 2017, 31, 2103–2108. [Google Scholar] [CrossRef]
- Mursaleen, M.; Edely, O.H.H. Generalized statistical convergence. Inf. Sci. 2004, 162, 287–294. [Google Scholar] [CrossRef]
- Mursaleen, M.; Danish Lohani, Q.M. Statistical limit superior and limit inferior in probabilistic normed spaces. Filomat 2011, 25, 55–67. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ganie, A.H.; Sheikh, N.A. New type of difference sequence space and matrix transformation. Filomat 2014, 28, 1381–1392. [Google Scholar] [CrossRef]
- Sheikh, N.A.; Ganie, A.H. A new paranormed sequence space and some matrix transformation. Acta Math. Acad. Paedagog. Nyhazi. 2012, 28, 47–58. [Google Scholar]
- Kizmaz, H. On certain sequences spaces. Can. Math. Bull. 1981, 24, 169–176. [Google Scholar] [CrossRef]
- Tripathy, B.C.; Esi, A.; Tripathy, B.K. On a new type of generalized difference Cesàro sequence spaces. Soochow J. Math. 2005, 31, 333–340. [Google Scholar]
- Nakano, H.H. Concave modulus. J. Math. Soc. Jpn. 1953, 5, 29–49. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlBaidani, M.M. Statistical Convergence of Δ-Spaces Using Fractional Order. Symmetry 2022, 14, 1685. https://doi.org/10.3390/sym14081685
AlBaidani MM. Statistical Convergence of Δ-Spaces Using Fractional Order. Symmetry. 2022; 14(8):1685. https://doi.org/10.3390/sym14081685
Chicago/Turabian StyleAlBaidani, Mashael M. 2022. "Statistical Convergence of Δ-Spaces Using Fractional Order" Symmetry 14, no. 8: 1685. https://doi.org/10.3390/sym14081685
APA StyleAlBaidani, M. M. (2022). Statistical Convergence of Δ-Spaces Using Fractional Order. Symmetry, 14(8), 1685. https://doi.org/10.3390/sym14081685