Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions
Abstract
:1. Introduction
2. Quasilinearization
3. Compact Finite Difference Schemes at Interior Nodes
3.1. First Derivative Approximation
3.2. Second Derivative Approximation
4. Compact Finite Difference Schemes for Robin Boundary Conditions
4.1. First Derivative Approximation
4.2. Second Derivative Approximation
5. Convergence
6. Numerical Examples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okereki, M.; Keates, S. Finite Element Applications. A Practical Guide to the FEM Process; Springer: New York, NY, USA, 2018. [Google Scholar]
- Chun, C.; Sakthivel, R. Homotopy perturbation technique for solving two-point boundary value problems–Comparison with other methods. Comput. Phys. Commun. 2010, 181, 1021–1024. [Google Scholar] [CrossRef]
- Hassan, H.N.; El-Tawil, M.A. An efficient analytic approach for solving two-point nonlinear boundary value problems by homotopy analysis method. Math. Methods Appl. Sci. 2011, 34, 977–989. [Google Scholar] [CrossRef]
- Jang, B. Two-point boundary value problems by the extended Adomian decomposition method. J. Comput. Appl. Math. 2008, 219, 253–262. [Google Scholar] [CrossRef]
- Lu, J. Variational iteration method for solving two-point boundary value problems. J. Comput. Appl. Math. 2007, 207, 92–95. [Google Scholar] [CrossRef]
- Egidi, N.; Maponi, P. A spectral method for the solution of boundary value problems. Appl. Math. Comput. 2021, 409, 125812. [Google Scholar] [CrossRef]
- Ibraheem, K.I.; Khalaf, B.M. Shooting neural networks algorithm for solving boundary value problems in ODEs. Appl. Appl. Math. 2011, 6, 187–200. [Google Scholar]
- Chawla, M.M.; Subramanian, R.; Sathi, H.L. A fourth order method for a singular two-point boundary value problem. BIT Numer. Math. 1988, 28, 88–97. [Google Scholar] [CrossRef]
- Nasir, N.M.; Majid, Z.A.; Ismail, F.; Bachok, N. Diagonal Block Method for Solving Two-Point Boundary Value Problems with Robin Boundary Conditions. Math. Probl. Eng. 2018, 2018, 2056834. [Google Scholar]
- Duan, J.; Rach, R.; Wazwaz, A.; Chaolu, T.; Wang, Z. A new modified Adomian decomposition method and its multistage form for solving nonlinear boundary value problems with Robin boundary conditions. Appl. Math. Model. 2013, 37, 8687–8708. [Google Scholar] [CrossRef]
- Islam, M.S.; Shirin, A. Numerical Solutions of a Class of Second Order Boundary Value Problems on Using Bernoulli Polynomials. Appl. Math. 2011, 2011, 1059–1067. [Google Scholar] [CrossRef]
- Roul, P.; Goura, V.M.K.P.; Agarwal, R. A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions. Appl. Math. Comput. 2019, 350, 283–304. [Google Scholar] [CrossRef]
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Gupta, M.M.; Kouatchou, J.; Zhang, J. Comparison of second-and fourth-order discretizations for multigrid Poisson solvers. J. Comput. Phys. 1997, 132, 226–232. [Google Scholar] [CrossRef]
- Sari, M.; Gürarslan, G. A sixth-order compact finite difference scheme to the numerical solutions of Burgers’ equation. Appl. Math. Comput. 2009, 208, 475–483. [Google Scholar] [CrossRef]
- Liao, W. An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation. Appl. Math. Comput. 2008, 206, 755–764. [Google Scholar] [CrossRef]
- Zhao, J.; Davison, M.; Corless, R.M. Compact finite difference method for American option pricing. J. Comput. Appl. Math. 2007, 206, 306–321. [Google Scholar] [CrossRef]
- Shah, A.; Yuan, L.; Khan, A. Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier–Stokes equations. Appl. Math. Comput. 2010, 214, 320–3213. [Google Scholar] [CrossRef]
- Zhao, J.; Corless, R.M. Compact finite difference method for integro-differential equations. Appl. Math. Comput. 2006, 177, 271–288. [Google Scholar] [CrossRef]
- Zhao, J. Compact finite difference methods for high order integro-differential equations. Appl. Math. Comput. 2013, 221, 66–78. [Google Scholar] [CrossRef]
- Li, J.; Visbal, M.R. High-order compact schemes for nonlinear dispersive waves. J. Sci. Comput. 2006, 26, 1–23. [Google Scholar] [CrossRef]
- Düring, B.; Fournié, M.; Jüngel, A. High order compact finite difference schemes for a nonlinear Black–Scholes equation. Int. J. Theor. Appl. Financ. 2003, 6, 767–789. [Google Scholar] [CrossRef]
- Fournie, M. High Order Compact Finite Difference Schemes for a Nonlinear Black–Scholes Equation; University of Konstanz Center of Finance and Econometrics Discussion Paper, 01/07; University of Konstanz, Center of Finance and Econometrics (CoFE): Konstanz, Germany, 2001. [Google Scholar]
- Mathale, D.; Dlamini, P.G.; Khumalo, M. Compact finite difference relaxation method for chaotic and hyperchaotic initial value systems. Comput. Appl. Math. 2018, 37, 5187–5202. [Google Scholar] [CrossRef]
- Kouagou, J.N.; Dlamini, P.G.; Simelane, S.M. On the multi-domain compact finite difference relaxation method for high dimensional chaos: The nine-dimensional Lorenz system. Alex. Eng. J. 2020, 59, 2617–2625. [Google Scholar] [CrossRef]
- Dlamini, P.G.; Khumalo, M. A new compact finite difference quasilinearization method for nonlinear evolution partial differential equations. Open Math. 2017, 15, 1450–1462. [Google Scholar] [CrossRef]
- Zhao, J. Highly accurate compact mixed methods for two point boundary value problems. Appl. Math. Comput. 2007, 188, 1402–1418. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, T.; Corless, R.M. Convergence of the compact finite difference method for second-order elliptic equations. Appl. Math. Comput. 2006, 182, 1454–1469. [Google Scholar] [CrossRef]
- Pettigrew, M.F.; Rasmussen, H.A. Compact method for second-order boundary value problems on nonuniform grids. Comput. Math. Appl. 1996, 31, 1–16. [Google Scholar] [CrossRef]
- Holsapple, R.; Venkataraman, R.; Doman, D. New, fast numerical method for solving two-point boundary-value problems. J. Guid. Control. Dyn. 2004, 27, 301–304. [Google Scholar] [CrossRef]
- Bellman, R.E.; Kalaba, R.E. Quasilinearization and Nonlinear Boundary-Value Problems; Elsevier: New York, NY, USA, 1965. [Google Scholar]
- Bhatta, S.K.; Sastri, K.S. Symmetric spline procedures for boundary value problems with mixed boundary conditions. J. Comput. Appl. Math. 1993, 45, 237–250. [Google Scholar] [CrossRef]
- Lang, F.G.; Xu, X.P. Quintic B-spline collocation method for second order mixed boundary value problem. Comput. Phys. Commun. 2012, 183, 913–921. [Google Scholar] [CrossRef]
- Majid, Z.A.; Nasir, N.M.; Ismail, F.; Bachok, N. Two point diagonally block method for solving boundary value problems with Robin boundary conditions. Malays. J. Math. Sci. 2019, 13, 1–14. [Google Scholar]
Present Method (CFDM) | Nasir et al. [9] | Islam and Shirin [11] | ||||
---|---|---|---|---|---|---|
N | h | Error Norm (L∞) | ROC | h | Error Norm (L∞) | Error Norm (L∞) |
10 | 0.175 | 1.47278 | 0.1 | 8.47 | 1.525206 | |
20 | 0.083 | 5.65279 | 7.70641 | 0.01 | 2.47 | |
30 | 0.054 | 2.81286 | 7.02551 | |||
40 | 0.040 | 3.52718 | 7.13829 | |||
50 | 0.032 | 5.65024 | 6.95506 |
Present Method (CFDM) | Nasir et al. [9] | ||||
---|---|---|---|---|---|
N | h | Error Norm (L∞) | ROC | h | Error Norm (L∞) |
8 | 0.143 | 1.28214 | 0.1 | 4.90 | |
16 | 0.067 | 6.99112 | 6.83821 | 0.01 | 1.90 |
24 | 0.043 | 3.94751 | 6.72948 | ||
32 | 0.032 | 5.09370 | 6.782713 |
Present Method (CFDM) | Nasir et al. [9] | ||||
---|---|---|---|---|---|
N | h | Error Norm (L∞) | ROC | h | Error Norm (L∞) |
8 | 0.1429 | 1.09973 | 0.1 | 4.47 | |
16 | 0.0667 | 7.66028 | 6.51687 | 0.01 | 1.31 |
24 | 0.0435 | 4.35134 | 6.71 | ||
32 | 0.0323 | 5.61728 | 6.85852 | ||
40 | 0.0256 | 1.08691 | 7.15459 |
Present Method (CFDM) | Nasir et al. [9] | Bhatta and Sastri [32] | ||||
---|---|---|---|---|---|---|
h | Error Norm (L∞) | ROC | h | Error Norm (L∞) | h | Error Norm (L∞) |
4.94004 | 0.1 | 1.66 | 0.44886 | |||
6.07399 | 5.77129 | 0.01 | 1.201 | 0.12439 | ||
6.10962 | 6.3357 | 0.26496 | ||||
4.76696 | 6.84389 | 0.48683 | ||||
0.83165 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malele, J.; Dlamini, P.; Simelane, S. Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions. Symmetry 2022, 14, 1720. https://doi.org/10.3390/sym14081720
Malele J, Dlamini P, Simelane S. Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions. Symmetry. 2022; 14(8):1720. https://doi.org/10.3390/sym14081720
Chicago/Turabian StyleMalele, James, Phumlani Dlamini, and Simphiwe Simelane. 2022. "Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions" Symmetry 14, no. 8: 1720. https://doi.org/10.3390/sym14081720
APA StyleMalele, J., Dlamini, P., & Simelane, S. (2022). Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions. Symmetry, 14(8), 1720. https://doi.org/10.3390/sym14081720