Influence of Physical Symmetries on the Magnetization Dynamics in Magnetic Fibers
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ryu, K.-S.; Thomas, L.; Yang, S.-H.; Parkin, S.S.P. Current induced tilting of domain walls in high velocity motion along perpendicularly magnetized micron-sized Co/Ni/Co racetracks. Appl. Phys. Express 2012, 5, 093006. [Google Scholar] [CrossRef]
- Yang, S.-H.; Ryu, K.-S.; Parkin, S.S.P. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 2015, 10, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Alejos, O.; Raposo, V.; Sanchez-Tejerina, L.; Martinez, E. Efficient and controlled domain wall nucleation for magnetic shift registers. Sci. Rep. 2017, 7, 11909. [Google Scholar] [CrossRef]
- Garg, C.; Yang, S.-H.; Phung, T.; Pushp, A.; Parkin, S.S.P. Dramatic influence of curvature of nanowire on chiral domain wall velocity. Sci. Adv. 2017, 3, e1602804. [Google Scholar] [CrossRef] [PubMed]
- Blachowicz, T.; Ehrmann, A. Magnetization reversal in bent nanofibers of different cross sections. J. Appl. Phys. 2018, 124, 152112. [Google Scholar] [CrossRef]
- Fidler, J.; Schrefl, T. Micromagnetic modelling—The current state of the art. J. Phys. D Appl. Phys. 2000, 33, R135–R156. [Google Scholar] [CrossRef]
- Zhu, B.; Lo, C.C.H.; Lee, S.J. Micromagnetic modeling of the effects of stress on magnetic properties. J. Appl. Phys. 2001, 89, 7009. [Google Scholar] [CrossRef]
- Hertel, R. Micromagnetic simulations of magnetostatically coupled Nickel nanowires. J. Appl. Phys. 2001, 90, 5752. [Google Scholar] [CrossRef]
- Han, M.G. Terahertz permeability of hard ferromagnetic L10-FePt alloy nanowire. Nanotechnology 2022, 34, 105703. [Google Scholar] [CrossRef]
- Dong, X.W.; Wang, R.F. Chirality-selection of magnetic domain walls in the Y-shaped nanostrips under small magnetic fields. J. Magn. Magn. Mater. 2019, 473, 26–31. [Google Scholar] [CrossRef]
- Berkov, D.V.; Boone, C.T.; Krivorotov, I.N. Micromagnetic simulations of magnetization dynamics in a nanowire induced by a spin-polarized current injected via a point contact. Phys. Rev. B 2011, 83, 054420. [Google Scholar] [CrossRef]
- Bran, C.; Fernandez-Roldan, J.A.; del Real, R.P.; Asenjo, A.; Chen, Y.-S.; Zhang, J.L.; Zhang, X.S.; Rodríguez, A.F.; Foerster, M.; Aballe, L.; et al. Unveiling the Origin of Multidomain Structures in Compositionally Modulated Cylindrical Magnetic Nanowires. ACS Nano 2020, 14, 12819–12827. [Google Scholar] [CrossRef] [PubMed]
- Han, D.-S.; Kim, N.-H.; Kim, J.-S.; Yin, Y.X.; Koo, J.-W.; Cho, J.H.; Lee, S.M.; Kläui, M.; Swagten, H.J.M.; Koopmans, B.; et al. Asymmetric Hysteresis for Probing Dzyaloshinskii–Moriya Interaction. Nano Lett. 2016, 16, 4438–4446. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Nakatani, Y.; Ieda, J.I.; Chiba, D. Electric field control of magnetic domain wall motion via modulation of the Dzyaloshinskii-Moriya interaction. Sci. Adv. 2018, 4, eaav0265. [Google Scholar] [CrossRef] [PubMed]
- Staggers, T.L.; Jacob, L.Y.; Pollard, S.D. Domain wall velocity asymmetries driven by saturation magnetization gradients without a Dzyaloshinskii-Moriya interaction. J. Magn. Magn. Mater. 2022, 558, 169500. [Google Scholar] [CrossRef]
- Cortés-Ortuno, D.; Beg, M.; Nehruji, V.; Breth, L.; Pepper, R.; Kluyver, T.; Downing, G.; Hesjedal, T.; Hatton, P.; Lancester, T. Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction. New J. Phys. 2018, 20, 113015. [Google Scholar] [CrossRef]
- Puliafito, V.; Khymyn, R.; Carpentieri, M.; Azzerboni, B.; Tiberkevich, V.; Slavin, A.; Finocchio, G. Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect. Phys. Rev. B 2019, 99, 024405. [Google Scholar] [CrossRef]
- Silvani, R.; Kuepferling, M.; Tacchi, S.; Carlotti, G. Impact of the interfacial Dzyaloshinskii-Moriya interaction on the band structure of one-dimensional artificial magnonic crystals: A micromagnetic study. J. Magn. Magn. Mater. 2021, 539, 168342. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Rial, J.; Proenca, M.P. A Novel Design of a 3D Racetrack Memory Based on Functional Segments in Cylindrical Nanowire Arrays. Nanomaterials 2020, 10, 2403. [Google Scholar] [CrossRef]
- Khan, A.A.; Ollivier, S.; Longofono, S.; Hempel, G.; Castrillon, J.; Jones, A.K. Brain-inspired Cognition in Next-generation Racetrack Memories. ACM Trans. Embed. Comput. Syst. 2022, 21, 79. [Google Scholar] [CrossRef]
- Gaididei, Y.; Goussev, A.; Kravchuk, V.P.; Pylypovskyi, O.V.; Robbins, J.M.; Sheka, D.D.; Slastikov, V.; Vasylkevych, S. Magnetization in narrow ribbons: Curvature effects. J. Phys. A Math. Theor. 2017, 50, 385401. [Google Scholar] [CrossRef]
- Heinz, B.; Brächer, T.; Schneider, M.; Wang, Q.; Lägel, B.; Friedel, A.M.; Breitbach, D.; Steinert, S.; Meyer, T.; Kewenig, M.; et al. Propagation of Spin-Wave Packets in Individual Nanosized Yttrium Iron Garnet Magnonic Conduits. Nano Lett. 2020, 20, 4220–4227. [Google Scholar] [CrossRef] [PubMed]
- Mamun, A.; Klöcker, M.; Blachowicz, T.; Sabantina, L. Investigation of the Morphological Structure of Needle-Free Electrospun Magnetic Nanofiber Mats. Magnetochemistry 2022, 8, 25. [Google Scholar] [CrossRef]
- Blachowicz, T.; Steblinski, P.; Grzybowski, J.; Ehrmann, A. Magnetization Dynamics in Nanofiber Networks. In Proceedings of the 2021 IEEE 11th International Conference on “Nanomaterials: Applications & Properties” (NAP-2021), Odessa, Ukraine, 5–11 September 2021; pp. 1–4. [Google Scholar]
- Blachowicz, T.; Grzybowski, J.; Steblinski, P.; Ehrmann, A. Neuro-inspired signal processing in ferromagnetic nanofibers. Biomimetics 2021, 6, 32. [Google Scholar] [CrossRef]
- Blachowicz, T.; Steblinski, P.; Grzybowski, J.; Ehrmann, A. Domain wall nucleation, propagation and annihilation in coupled bent ferromagnetic nanofibers with rotating local input fields. J. Magn. Magn. Mater. 2022, 546, 168925. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. Magnetic elements for neuromorphic computing. Molecules 2020, 25, 2550. [Google Scholar] [CrossRef]
- Kuncic, Z.; Nakayama, T. Neuromorphic nanowire networks: Principles, progress and future prospects for neuro-inspired information processing. Adv. Phys. X 2021, 6, 1894234. [Google Scholar] [CrossRef]
- Sbiaa, R. Multistate Magnetic Domain Wall Devices for Neuromorphic Computing. Phys. Stat. Sol. Rap. Res. Lett. 2021, 15, 2100125. [Google Scholar] [CrossRef]
- Scholz, W.; Fidler, J.; Schrefl, T.; Suess, D.; Dittrich, R.; Forster, H.; Tsiantos, V. Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci. 2003, 28, 366–383. [Google Scholar] [CrossRef]
- Nasirpouri, F.; Peighambari-Sattari, S.-M.; Bran, C.; Palmero, E.M.; Eguiarte, E.B.; Vazquez, M.; Patsopoulos, A.; Kechrakos, D. Geometrically designed domain wall trap in tri-segmented nickel magnetic nanowires for spintronics devices. Sci. Rep. 2019, 9, 9010. [Google Scholar] [CrossRef] [PubMed]
- Al Bahri, M.; Borie, B.; Jin, T.L.; Sbiaa, R.; Kläui, M.; Piramanayagam, S.N. Staggered Magnetic Nanowire Devices for Effective Domain-Wall Pinning in Racetrack Memory. Phys. Rev. Appl. 2019, 11, 024023. [Google Scholar] [CrossRef]
- Masciocchi, G.; Fattouhi, M.; Kehlberger, A.; Lopez-Diaz, L.; Syskaki, M.-A.; Kläui, M. Strain-controlled domain wall injection into nanowires for sensor applications. J. Appl. Phys. 2021, 130, 183903. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachowicz, T.; Steblinski, P.; Ehrmann, A. Influence of Physical Symmetries on the Magnetization Dynamics in Magnetic Fibers. Symmetry 2023, 15, 234. https://doi.org/10.3390/sym15010234
Blachowicz T, Steblinski P, Ehrmann A. Influence of Physical Symmetries on the Magnetization Dynamics in Magnetic Fibers. Symmetry. 2023; 15(1):234. https://doi.org/10.3390/sym15010234
Chicago/Turabian StyleBlachowicz, Tomasz, Pawel Steblinski, and Andrea Ehrmann. 2023. "Influence of Physical Symmetries on the Magnetization Dynamics in Magnetic Fibers" Symmetry 15, no. 1: 234. https://doi.org/10.3390/sym15010234
APA StyleBlachowicz, T., Steblinski, P., & Ehrmann, A. (2023). Influence of Physical Symmetries on the Magnetization Dynamics in Magnetic Fibers. Symmetry, 15(1), 234. https://doi.org/10.3390/sym15010234