Fast Calculation of the Derivatives of Bessel Functions with Respect to the Parameter and Applications
Abstract
:1. Introduction
2. The Recurrence Formula of the Derivative with Respect to the Parameter of and and Their Applications
- (1)
- Symbolic computation.
- (2)
- Numerical integration.
3. Fast Calculation of the Derivative of , , , and the Correlation Function with Respect to the Parameter and Their Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press: Burlington, VT, USA, 2007. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Riyasat, M.; Khan, S.; Haneef, M. Generalized 2D extension of q-Bessel polynomials. Rep. Math. Phys. 2022, 90, 63–80. [Google Scholar] [CrossRef]
- Riyasat, M.; Khan, S.; Nahid, T. Orthogonality associated with Bessel type Sheffer sequences with q-parameters. Math. Notes 2022, 111, 441–454. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Higher derivatives of the Bessel functions with respect to the order. Int. Trans. Spec. Funct. 2016, 27, 566–577. [Google Scholar] [CrossRef]
- Apelblat, A.; Kravitsky, N. Integral representations of derivatives and integrals with respect to the order of the Bessel functions , , the Anger function and the integral Bessel function . IMA. J. Appl. Math. 1985, 34, 187–210. [Google Scholar]
- González-Santander, J.L. Closed form expressions for derivatives of Bessel functions with respect to the order. J. Math. Anal. Appl. 2018, 466, 1060–1081. [Google Scholar]
- Oberhettinger, F. On the derivative of Bessel functions with respect to the order. J. Math. Phys. 1958, 37, 75–78. [Google Scholar]
- Dunster, T.M. On the order derivatives of Bessel functions. Constr. Approx. 2017, 46, 47–68. [Google Scholar]
- González-Santander, J.L. Reflection formulas for order derivatives of Bessel functions. arXiv 2018, arXiv:1809.08124. [Google Scholar]
- Airey, J.R. The Bessel function derivatives and . Philos. Mag. 1935, 19, 236–243. [Google Scholar]
- Brychkov, Y.A.; Geddes, K.O. On the derivatives of the Bessel and Struve functions with respect to the order. Int. Trans. Spec. Funct. 2005, 16, 187–198. [Google Scholar]
- Sesma, J. Derivatives with Respect to the Order of the Bessel Function of the First Kind. Available online: https://arxiv.org/pdf/1401.4850.pdf (accessed on 20 January 2014).
- Cohl, H.S. Derivatives with respect to the degree and order of associated Legendre functions for z > 1 using modified Bessel functions. Int. Trans. Spec. Funct. 2010, 21, 581–588. [Google Scholar]
- Li, A.; Qin, F.; Qin, H. The calculation and application of the partial derivatives of the generalized hypergeometric function. IAENG Int. J. Appl. Math. 2020, 50, 713–719. [Google Scholar]
- Li, A.; Qin, F. The representations on the partial derivatives of the extended, generalized Gamma and incomplete Gamma functions and their applications. IAENG Int. J. Appl. Math. 2017, 47, 312–318. [Google Scholar]
- Qin, H.; Shang, N.; Li, A. Some identities on the Hurwitz zeta function and the extended Euler sums. Int. Trans. Spec. Funct. 2013, 24, 561–581. [Google Scholar]
Algorithm | x, α, m | Time16, Err | Time32, Err | Time48, Err | Value |
---|---|---|---|---|---|
(28) J | 0.000000,10−17 | 0.000000,10−37 | 0.015625,10−57 | 0.099929488104248589368253077762 094775507915325708… | |
(28) I | 0.000000,10−17 | 0.000000,10−37 | 0.000000,10−57 | 0.072368397550548512467138097425 131708648435197397… | |
(29) | 7.875000,10−16 | 25.593750,10−32 | 123.546875,10−48 | ||
(30) | 8.312500,10−16 | 27.531250,10−32 | 125.046875,10−48 | ||
(33) | 0.031250,10−8 | 0.046875,10−29 | 0.093750,10−47 | ||
(34) | 0.062500,10−13 | 0.109375,10−29 | 0.156250,10−48 |
Algorithm | α,x,m | Time16,Err | Time32, Err | Time48, Err | Value |
---|---|---|---|---|---|
(40)L | 0.062500,10−7 | 0.203125,10−11 | 0.234375,10−12 | 136557.84577593821918 99633311486… | |
(40)R | 0.000000,10−20 | 0.000000,10−40 | 0.000000,10−60 | ||
(41)L | 0.062500,10−12 | 0.125000,10−19 | 0.187500,10−26 | 278.09550436403709 0207658787058492… | |
(41)R | 0.015625,10−19 | 0.000000,10−39 | 0.000000,10−59 | ||
(42)L | 0.031250,10−8 | 0.093750,10−14 | 0.140625,10−19 | −1.526973433859057 03392895856…×106 | |
(42)R | 0.000000,10−20 | 0.000000,10−40 | 0.000000,10−60 |
Algorithm | α,x,m | Time16, Err | Time32, Err | Time48, Err | Value |
---|---|---|---|---|---|
(64)L | 0.078125,10−9 | 0.093750,10−18 | 0.156250,10−26 | 4.96945368037296 9002463996299⋯ | |
(64)R | 0.000000,10−18 | 0.015625,10−38 | 0.000000,10−58 | ||
(65)L | 0.015625,10−8 | 0.078125,10−12 | 0.093750,10−12 | −675.25026031399 638583019078⋯ | |
(65)R | 0.000000,10−19 | 0.015625,10−39 | 0.000000,10−59 | ||
(66)L | 0.046875,10−11 | 0.062500,10−19 | 0.093750,10−27 | −83.493834077193 62379381270575⋯ | |
(66)R | 0.015625,10−17 | 0.000000,10−37 | 0.000000,10−57 | ||
(67)L | 0.031250,10−7 | 0.078125,10−11 | 0.140625,10−12 | −13392.783730964 647162808034589⋯ | |
(67)R | 0.000000,10−18 | 0.000000,10−38 | 0.000000,10−58 | ||
(67)L | 0.015625,10−7 | 0.078125,10−11 | 0.109375,10−12 | 1245195.773481521 556850797968369⋯ | |
(67)R | 0.000000,10−20 | 0.000000,10−40 | 0.000000,10−60 | ||
(68)L | 0.015625,10−13 | 0.015625,10−32 | 0.031250,10−48 | 47.47582681649346 187731701168501⋯ | |
(68)R | 0.015625,10−19 | 0.031250,10−39 | 0.031250,10−592 | ||
(68)L | 0.015625,10−16 | 0.015625,10−32 | 0.015625,10−48 | −0.47429674849304 849671297559750⋯ | |
(68)R | 0.015625,10−17 | 0.015625,10−37 | 0.031250,10−57 | ||
(69)L | 0.093750,10−12 | 0.203125,10−18 | 0.296875,10−26 | 33.096824127964⋯ +29.4406483104⋯i | |
(69)R | 0.015625,10−19 | 0.015625,10−39 | 0.000000,10−59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Qin, H. Fast Calculation of the Derivatives of Bessel Functions with Respect to the Parameter and Applications. Symmetry 2023, 15, 64. https://doi.org/10.3390/sym15010064
Li A, Qin H. Fast Calculation of the Derivatives of Bessel Functions with Respect to the Parameter and Applications. Symmetry. 2023; 15(1):64. https://doi.org/10.3390/sym15010064
Chicago/Turabian StyleLi, Aijuan, and Huizeng Qin. 2023. "Fast Calculation of the Derivatives of Bessel Functions with Respect to the Parameter and Applications" Symmetry 15, no. 1: 64. https://doi.org/10.3390/sym15010064
APA StyleLi, A., & Qin, H. (2023). Fast Calculation of the Derivatives of Bessel Functions with Respect to the Parameter and Applications. Symmetry, 15(1), 64. https://doi.org/10.3390/sym15010064