Lightlike Hypersurfaces of Almost Productlike Semi-Riemannian Manifolds
Abstract
:1. Introduction
2. Preliminaries
- (i)
- totally geodesic with respect to if ,
- (ii)
- totally geodesic with respect to if ,
- (iii)
- totally tangentially umbilical with respect to if there exists a smooth function k such that for any ,
- (iv)
- totally tangentially umbilical with respect to if there exists a smooth function such that for any ,
- (v)
- totally normally umbilical with respect to if there exists a smooth function k such that for any
- (vi)
- totally normally umbilical with respect to if there exists a smooth function such that for any .
3. Almost Productlike Semi-Riemannian Manifolds and Their Lightlike Hypersurfaces
- (i)
- a screen-semi-invariant lightlike hypersurface if and belong to ,
- (ii)
- a screen-invariant lightlike hypersurface if belongs to ,
- (iii)
- a radical-anti-invariant lightlike hypersurface if belongs to ,
- (iv)
- a radical-invariant lightlike hypersurface if belongs to .
- (i)
- If is a screen-semi-invariant lightlike hypersurface, then and belong to .
- (ii)
- If is a screen-invariant lightlike hypersurface, then belongs to .
- (iii)
- If is a radical-anti-invariant lightlike hypersurface, then belongs to .
- (iv)
- If is a radical-invariant lightlike hypersurface, then belongs to .
4. Screen Semi-Invariant Lightlike Hypersurfaces
5. Screen Semi-Invariant Lightlike Hypersurfaces of Locally Productlike Statistical Manifolds
- (i)
- is integrable with respect to ∇.
- (ii)
- The relation
- (iii)
- The relationis satisfied for any , where .
- (i)
- is integrable with respect to .
- (ii)
- The relationis satisfied for any .
- (iii)
- The relation
- (i)
- The hypersurface is called mixed geodesic with respect to if for any and .
- (ii)
- The hypersurface is called mixed geodesic with respect to if for any and .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takano, K. Statistical manifolds with almost complex structures. Tensor New Ser. 2010, 72, 225–231. [Google Scholar]
- Aquib, M. Some inequalities for statistical submanifolds of quaternion Kaehler-like statistical space forms. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950129. [Google Scholar] [CrossRef]
- Aytimur, H.; Kon, M.; Mihai, A.; Özgür, C.; Takano, K. Chen inequalities for statistical submanifolds of Kähler-like statistical manifolds. Mathematics 2019, 7, 1202. [Google Scholar] [CrossRef] [Green Version]
- Murathan, C.; Şahin, B. A study of Wintgen like inequality for submanifolds in statistical warped product manifolds. J. Geom. 2018, 109, 1–18. [Google Scholar] [CrossRef]
- Siddiqui, A.N.; Siddiqi, M.D.; Alkhaldi, A.H.; Ali, A. Lower bounds on statistical submersions with vertical Casorati curvatures. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250044. [Google Scholar] [CrossRef]
- Takano, K. Statistical manifolds with almost contact structures and its statistical submersions. J. Geom. 2006, 85, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Vilcu, A.D.; Vilcu, G.E. Statistical manifolds with almost quaternionic structures and quaternionic Kähler-like statistical submersions. Entropy 2015, 17, 6213–6228. [Google Scholar] [CrossRef] [Green Version]
- Akyol, M.A.; Gunduzalp, Y. Hemi-slant submersions from almost product Riemannian manifolds. Gulf J. Math. 2016, 4, 15–27. [Google Scholar] [CrossRef]
- Cvetic, M.; Youm, D. Rotating intersecting M-branes. Nucl. Phys. B 1997, 499, 253–282. [Google Scholar] [CrossRef] [Green Version]
- Holm, M. New insights in brane and Kaluza–Klein theory through almost product structures. arXiv 1998, arXiv:hep-th/9812168. [Google Scholar]
- Atçeken, M.; Keleş, S. Two theorems on invariant submanifolds of product Riemannian manifold. Indian J. Pure Appl. Math. 2003, 34, 1035–1044. [Google Scholar]
- Li, Y.; Mofarreh, F.; Dey, S.; Roy, S.; Ali, A. General relativistic space-time with η 1-Einstein metrics. Mathematics 2022, 10, 2530. [Google Scholar] [CrossRef]
- Li, Y.; Alkhaldi, A.H.; Ali, A.; Laurian-Ioan, P. On the topology of warped product pointwise semi-slant submanifolds with positive curvature. Mathematics 2021, 9, 3156. [Google Scholar] [CrossRef]
- Antić, M.; Hu, Z.; Moruz, M.; Vrancken, L. Surfaces of the nearly Kähler S3xS3 preserved by the almost product structure. Math. Nachrichten 2021, 294, 2286–2301. [Google Scholar] [CrossRef]
- Antić, M. Characterization of Warped Product Lagrangian Submanifolds in Cn. Results Math. 2022, 77, 106. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Timelike Circular Surfaces and Singularities in Minkowski 3-Space. Symmetry 2022, 14, 1914. [Google Scholar] [CrossRef]
- Li, Y.; Alluhaibi, N.; Abdel-Baky, R.A. One-Parameter Lorentzian Dual Spherical Movements and Invariants of the Axodes. Symmetry 2022, 14, 1930. [Google Scholar] [CrossRef]
- Li, Y.; Nazra, S.H.; Abdel-Baky, R.A. Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space. Symmetry 2022, 14, 1996. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Salam, A.A.; Saad, M.K. Primitivoids of curves in Minkowski plane. AIMS Math. 2023, 8, 2386–2406. [Google Scholar] [CrossRef]
- Sahin, B. Slant submanifolds of an almost product Riemannian manifold. J. Korean Math. Soc. 2006, 43, 717–732. [Google Scholar] [CrossRef] [Green Version]
- Atçeken, M.; Şahin, B.; Kılıç, E. On invariant submanifolds of Riemannian warped product manifold. Turk. J. Math. 2003, 27, 407–423. [Google Scholar]
- Erkan, E.; Takano, K.; Gülbahar, M. Locally product-like statistical manifolds and their hypersurfaces. arXiv 2022, arXiv:2212.02862. [Google Scholar]
- Duggal, K.L.; Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Duggal, K.L.; Şahin, B. Differential Geometry of Lightlike Submanifolds; Springer-Birkhauser: Basel, Switzerland, 2010. [Google Scholar]
- Duggal, K.L.; Jin, D.H. Totally umbilical lightlike submanifolds. Kodai Math. J. 2003, 26, 49–68. [Google Scholar] [CrossRef]
- Bejan, C.L.; Duggal, K.L. Global lightlike manifolds and harmonicity. Kodai Math. J. 2005, 28, 131–145. [Google Scholar] [CrossRef]
- Amari, S. Differential-Geometrical Methods in Statistics; Lecture Notes in Statistics; Springer: New York, NY, USA, 1985; Volume 28. [Google Scholar]
- Furuhata, H. Hypersurfaces in statistical manifolds. Differ. Geom. Appl. 2009, 27, 420–429. [Google Scholar] [CrossRef]
- Bahadır, O.; Tripathi, M.M. Geometry of lightlike hypersurfaces of a statistical manifold. arXiv 2019, arXiv:1901.09251. [Google Scholar]
- Bahadır, O.; Siddiqui, A.N.; Gülbahar, M.; Alkhaldi, A.H. Main Curvatures Identities on Lightlike Hypersurfaces of Statistical Manifolds and Their Characterizations. Mathematics 2022, 10, 2290. [Google Scholar] [CrossRef]
- Furuhata, H.; Hasegawa, I. Submanifold Theory in Holomorphic Statistical Manifolds; Geometry of Cauchy-Riemann submanifolds; Springer: Singapore, 2016; pp. 179–215. [Google Scholar]
- Kurose, T. Conformal-projective geometry of statistical manifolds. Interdiscip. Inf. Sci. 2002, 8, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Kon, M. Structures on Manifolds; World Scientific Publishing Co.: Singapore, 1984. [Google Scholar]
- Şahin, B.; Atçeken, M. Semi-invariant submanifolds of Riemannian product manifold. Balkan J. Geom. Appl. 2003, 8, 91–100. [Google Scholar]
- Atçeken, M.; Kılıç, E. Semi-invariant lightlike submanifolds of a semi-Riemannian product manifold. Kodai Math. J. 2007, 30, 361–378. [Google Scholar] [CrossRef]
- Kılıç, E.; Şahin, B. Radical anti-invariant lightlike submanifolds of semi-Riemannian product manifolds. Turk. J. Math. 2008, 32, 429–449. [Google Scholar]
- Kılıç, E.; Bahadır, O. Lightlike hypersurfaces of a semi-Riemannian product manifold and quarter-symmetric nonmetric connections. Int. J. Math. Math. Sci. 2012, 2012, 178390. [Google Scholar] [CrossRef] [Green Version]
- Yano, K. On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 1944, 20, 340–345. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Verstraelen, L. A link between torse-forming vector fields and rotational hypersurfaces. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750177. [Google Scholar] [CrossRef]
- Li, Y.; Haseeb, A.; Ali, M. LP-Kenmotsu manifolds admitting η-Ricci solitons and spacetime. J. Math. 2022. [Google Scholar] [CrossRef]
- Li, Y.; Dey, S.; Pahan, S.; Ali, A. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on Paracontact geometry. Open Math. 2022, 20, 574–589. [Google Scholar] [CrossRef]
- Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2022, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Erdoğdu, M.; Yavuz, A. Nonnull soliton surface associated with the Betchov-Da Rios equation. Rep. Math. Phys. 2022, 90, 241–255. [Google Scholar] [CrossRef]
- Li, Y.; Mondal, S.; Dey, S.; Bhattacharyya, A.; Ali, A. A Study of Conformal η-Einstein Solitons on Trans-Sasakian 3-Manifold. J. Nonlinear Math. Phy. 2022, 1–27. [Google Scholar] [CrossRef]
- Yano, K. Concircular geometry I. Concircular transformations. Proc. Imp. Acad. Japan 1940, 16, 195–200. [Google Scholar] [CrossRef]
- Yano, K.; Chen, B.-Y. On the concurrent vector fields of immersed manifolds. Kōdai Math. Semin. Rep. 1971, 23, 343–350. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksu, Ö.; Gülbahar, M.; Erkan, E. Lightlike Hypersurfaces of Almost Productlike Semi-Riemannian Manifolds. Symmetry 2023, 15, 77. https://doi.org/10.3390/sym15010077
Aksu Ö, Gülbahar M, Erkan E. Lightlike Hypersurfaces of Almost Productlike Semi-Riemannian Manifolds. Symmetry. 2023; 15(1):77. https://doi.org/10.3390/sym15010077
Chicago/Turabian StyleAksu, Ömer, Mehmet Gülbahar, and Esra Erkan. 2023. "Lightlike Hypersurfaces of Almost Productlike Semi-Riemannian Manifolds" Symmetry 15, no. 1: 77. https://doi.org/10.3390/sym15010077
APA StyleAksu, Ö., Gülbahar, M., & Erkan, E. (2023). Lightlike Hypersurfaces of Almost Productlike Semi-Riemannian Manifolds. Symmetry, 15(1), 77. https://doi.org/10.3390/sym15010077