Fixed-Point Theorems on Fuzzy Bipolar -Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (FB1)
- for all ;
- (FB2)
- iff for and ;
- (FB3)
- for all ;
- (FB4)
- for all and ;
- (FB5)
- is left continuous;
- (FB6)
- is nondecreasing and .
- (FBB1)
- for all ;
- (FBB2)
- iff for and ;
- (FBB3)
- for all ;
- (FBB4)
- for all and ;
- (FBB5)
- is left continuous;
- (FBB6)
- is nondecreasing for all and .
- (A1)
- A point is called a left, right and central point if , , and both hold. Similarly, a sequence , on a set , are said to be a left and right sequence, respectively.
- (A2)
- A sequence is convergent to a point ♭ if and only if is a left sequence, ♭ is a right point, and for , or is a right sequence, ♭ is a left point, and for .
- (A3)
- A bisequence is a sequence on the set . If the sequences and are convergent, then the bisequence is said to be convergent. is a Cauchy bisequence if for .
- (A4)
- A fuzzy bipolar -metric space is called complete if every Cauchy bisequence is convergent.
2. Main Result
- (B1)
- and ;
- (B2)
- , for all , with ;
- (B3)
- is BT.
- (C1)
- and ;
- (C2)
- , for all , with ;
- (C3)
- is BT.
- (H1)
- and ;
- (H2)
- (H3)
- is BT.
3. Applications
3.1. Application I
- (T1)
- and ;
- (T2)
- There is a continuous function and satisfyingfor ;
- (T3)
- .
- Let given by
- Define given by
3.2. Application II
- (i)
- We can find and such that
- (ii)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11, 326–334. [Google Scholar]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Gregori, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Shamas, I.; Rehman, S.U.; Aydi, H.; Mahmood, T.; Ameer, E. Unique fixed-point results in fuzzy metric spaces with an application to fredholm integral equations. J. Funct. Spaces 2021, 2021, 4429173. [Google Scholar] [CrossRef]
- Mutlu, A.; Gurdal, U. Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373. [Google Scholar] [CrossRef]
- Bartwal, A.; Dimri, R.C.; Prasad, G. Some fixed point theorems in fuzzy bipolar metric spaces. J. Nonlinear Sci. Appl. 2020, 13, 196–204. [Google Scholar] [CrossRef]
- Gunaseelan, M.; Joseph, G.A.; Mitrović, Z.D.; Bota, M.-F. Solving an integral equation via fuzzy triple controlled bipolar metric spaces. Mathematics 2021, 9, 3181. [Google Scholar] [CrossRef]
- Gunaseelan, M.; Joseph, G.A.; Haq, A.U.; Jarad, F.; Baloch, I.A. Solving an integral equation by using fixed point approach in fuzzy bipolar metric spaces. J. Funct. Spaces 2021, 2021, 9129992. [Google Scholar] [CrossRef]
- Gunaseelan, M.; Joseph, G.A.; Haq, A.U.; Baloch, I.A.; Park, C. On solution of Fredholm integral equations via fuzzy b-metric spaces using triangular property. AIMS Math. 2022, 7, 11102–11118. [Google Scholar] [CrossRef]
- Gunaseelan, M.; Joseph, G.A.; Kausar, N.; Munir, M.; Khan, S.; Ozbilge, E. Solving an integral equation via intuitionistic fuzzy bipolar metric spaces. Decis. Mak. Appl. Manag. Eng. 2023, 6, 536–556. [Google Scholar] [CrossRef]
- Gunaseelan, M.; Joseph, G.A.; Kumar, S.; Ege, O.; De la Sen, M. Fixed-point theorems for nonlinear contraction in fuzzy-controlled bipolar metric spaces. Axioms 2023, 12, 396. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; p. 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative; Gordon and Breach: London, UK, 1993. [Google Scholar]
- Mehmood, F.; Ali, R.; Ionescu, C.; Kamran, T. Extended fuzzy b-metric spaces. J. Math. Anal. 2017, 8, 124–131. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalingam, B.; Ege, O.; Aloqaily, A.; Mlaiki, N.
Fixed-Point Theorems on Fuzzy Bipolar
Ramalingam B, Ege O, Aloqaily A, Mlaiki N.
Fixed-Point Theorems on Fuzzy Bipolar
Ramalingam, Balaji, Ozgur Ege, Ahmad Aloqaily, and Nabil Mlaiki.
2023. "Fixed-Point Theorems on Fuzzy Bipolar
Ramalingam, B., Ege, O., Aloqaily, A., & Mlaiki, N.
(2023). Fixed-Point Theorems on Fuzzy Bipolar