Compromised-Imputation and EWMA-Based Memory-Type Mean Estimators Using Quantile Regression
Abstract
:1. Introduction
2. EWMA Statistics and Traditional Imputation-Based Estimators
- Case I: missing values exclusively exist within the target variable.
- Case II: both contain missing values and is known.
- Case III: both contain missing values and is unknown.
3. Adapted Estimators Using Quantile Regression
Adapted Estimators
- When employing squared residuals to gauge the size of residuals, those with substantial magnitudes will disproportionately contribute to the overall size;
- Utilizing measures of central tendency like the arithmetic mean, which lack robustness against outliers, exerts a disproportionately strong influence on measures when dealing with larger squared values. This inconsistency significantly impacts regression estimates.
4. Proposed Estimators
4.1. Case-I
4.2. Case-II
4.3. Case-III
5. Numerical Study
5.1. Karachi Humidity Data (Population-1)
5.2. HBL Data (Population-2)
5.3. Simulation Study: Asymmetric Data (Population-3)
- Draw 5000 samples in total using SRSWOR;
- Randomly remove units from each sample, resulting in ;
- Calculate mean of r observations from each sample;
- Calculate MSE as follows
5.4. Discussion
- In both the existing and proposed estimators, increasing the value of results in an increase in the mean squared error (MSE);
- Among all the existing and proposed estimators, the traditional ratio-type estimators exhibit the highest MSE;
- The adapted estimators have lower MSE than ;
- The proposed estimators have lower MSE than the traditional and adapted estimators;
- Consequently, the proposed classes outperform their counterparts in all three instances of missing data.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubin, D.B. Inference and missing data. Biometrika 1976, 63, 581–592. [Google Scholar] [CrossRef]
- Gordon, C.A. Investigating Statistical Approaches to Handling Missing Data in the Context of the Gateshead Millennium Study. Master’s Thesis, University of Glasgow, Glasgow, UK, 2010. [Google Scholar]
- Kadilar, C.; Cingi, H. Estimators for the population mean in the case of missing data. Commun. Stat.-Theory Methods 2008, 37, 2226–2236. [Google Scholar] [CrossRef]
- Diana, G.; Francesco Perri, P. Improved estimators of the population mean for missing data. Commun. Stat.-Theory Methods 2010, 39, 3245–3251. [Google Scholar] [CrossRef]
- Al-Omari, A.I.; Bouza, C.N.; Herrera, C. Imputation methods of missing data for estimating the population mean using simple random sampling with known correlation coefficient. Qual. Quant. 2013, 47, 353–365. [Google Scholar] [CrossRef]
- Al-Omari, A.I.; Bouza, C. Ratio estimators of the population mean with missing values using ranked set sampling. Environmetrics 2015, 26, 67–76. [Google Scholar] [CrossRef]
- Bhushan, S.; Pandey, A.P. Optimal imputation of missing data for estimation of population mean. J. Stat. Manag. Syst. 2016, 19, 755–769. [Google Scholar] [CrossRef]
- Bhushan, S.; Pandey, A.P. Optimality of ratio type estimation methods for population mean in the presence of missing data. Commun. Stat.-Theory Methods 2018, 47, 2576–2589. [Google Scholar] [CrossRef]
- Prasad, S. Ratio exponential type estimators with imputation for missing data in sample surveys. Model Assist. Stat. Appl. 2017, 12, 95–106. [Google Scholar] [CrossRef]
- Zaman, T.; Bulut, H. Modified ratio estimators using robust regression methods. Commun. Stat.-Theory Methods 2019, 48, 2039–2048. [Google Scholar] [CrossRef]
- Zaman, T.; Bulut, H. Modified regression estimators using robust regression methods and covariance matrices in stratified random sampling. Commun. Stat.-Theory Methods 2020, 49, 3407–3420. [Google Scholar] [CrossRef]
- Shahzad, U.; Al-Noor, N.H.; Hanif, M.; Sajjad, I.; Muhammad Anas, M. Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices. Commun. Stat.-Simul. Comput. 2022, 51, 4276–4295. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Zaman, T.; Al Mutairi, A. Efficient Difference and Ratio-Type Imputation Methods under Ranked Set Sampling. Axioms 2023, 12, 558. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Shukla, S.; Bakr, M.E.; Tashkandy, Y.A.; Hossain, M.M. New logarithmic type imputation techniques in presence of measurement errors. Alex. Eng. J. 2023, 71, 707–730. [Google Scholar] [CrossRef]
- Shahzad, U.; Hanif, M.; Sajjad, I.; Anas, M.M. Quantile regression-ratio-type estimators for mean estimation under complete and partial auxiliary information. Sci. Iran. 2022, 29, 1705–1715. [Google Scholar] [CrossRef]
- Anas, M.M.; Huang, Z.; Alilah, D.A.; Shafqat, A.; Hussain, S. Mean estimators using robust quantile regression and L-moments’ characteristics for complete and partial auxiliary information. Math. Probl. Eng. 2021, 2021, 9242895. [Google Scholar]
- Shahzad, U.; Ahmad, I.; Al-Noor, N.H.; Iftikhar, S.; Abd Ellah, A.H.; Benedict, T.J. Särndal Approach and Separate Type Quantile Robust Regression Type Mean Estimators for Nonsensitive and Sensitive Variables in Stratified Random Sampling. J. Math. 2022, 2022, 1430488. [Google Scholar] [CrossRef]
- Shahzad, U.; Ahmad, I.; Al-Noor, N.H.; Hanif, M.; Almanjahie, I.M. Robust estimation of the population mean using quantile regression under systematic sampling. Math. Popul. Stud. 2023, 30, 195–207. [Google Scholar] [CrossRef]
- Shahzad, U.; Al-Noor, N.H.; Afshan, N.; Alilah, D.A.; Hanif, M.; Anas, M.M. Minimum Covariance Determinant-Based Quantile Robust Regression-Type Estimators for Mean Parameter. Math. Probl. Eng. 2021, 2021, 5255839. [Google Scholar] [CrossRef]
- Koc, T.; Koc, H. A New Class of Quantile Regression Ratio-Type Estimators for Finite Population Mean in Stratified Random Sampling. Axioms 2023, 12, 713. [Google Scholar] [CrossRef]
- Yadav, V.K.; Prasad, S. Exponential method of estimation in sampling theory under robust quantile regression methods. Commun. Stat.-Theory Methods 2023, 1–19. [Google Scholar] [CrossRef]
- Roberts, S.W. Control chart tests based on geometric moving averages. Technometrics 2000, 42, 97–101. [Google Scholar] [CrossRef]
- Noor-ul-Amin, M. Memory type estimators of population mean using exponentially weighted moving averages for time scaled surveys. Commun. Stat.-Theory Methods 2021, 50, 2747–2758. [Google Scholar] [CrossRef]
- Noor-ul-Amin, M. Memory type ratio and product estimators for population mean for time-based surveys. J. Stat. Comput. Simul. 2020, 90, 3080–3092. [Google Scholar] [CrossRef]
- Aslam, I.; Noor-ul-Amin, M.; Hanif, M.; Sharma, P. Memory type ratio and product estimators under ranked-based sampling schemes. Commun. Stat.-Theory Methods 2023, 52, 1155–1177. [Google Scholar] [CrossRef]
- Aslam, I.; Noor-ul-Amin, M.; Yasmeen, U.; Hanif, M. Memory type ratio and product estimators in stratified sampling. J. Reliab. Stat. Stud. 2020, 13, 1–20. [Google Scholar] [CrossRef]
- Singh, G.N.; Bhattacharyya, D.; Bandyopadhyay, A.; Khalid, M. Study of a memory type shrinkage estimator of population mean in quality control process. IEEE Access 2021, 9, 161555–161564. [Google Scholar] [CrossRef]
- Chhaparwal, P.; Kumar, S. Improving Efficiencies of Ratio-and Product-type Estimators for Estimating Population Mean for Time-based Survey. J. Reliab. Stat. Stud. 2022, 15, 325–340. [Google Scholar] [CrossRef]
- Qureshi, M.N.; Tariq, M.U.; Hanif, M. Memory-type ratio and product estimators for population variance using exponentially weighted moving averages for time-scaled surveys. Commun. Stat.-Simul. Comput. 2022, 1–10. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Alrumayh, A.; Khogeer, H.A.; Onyango, R. Evaluating the performance of memory type logarithmic estimators using simple random sampling. PLoS ONE 2022, 17, e0278264. [Google Scholar]
- Bhushan, S.; Kumar, A.; Al-Omari, A.I.; Alomani, G.A. Mean Estimation for Time-Based Surveys Using Memory-Type Logarithmic Estimators. Mathematics 2023, 11, 2125. [Google Scholar] [CrossRef]
- Al-Noor, N.H.; Mohammad, A.A. Model of robust regression with parametric and nonparametric methods. Math. Theory Model. 2013, 3, 27–39. [Google Scholar]
- Hampel, F.R.; Ronchetti, E.M.; Rousseeuw, P.J.; Stahel, W.A. Robust Statistics: The Approach Based on Influence Functions; John Wiley & Sons Publication: New York, NY, USA, 1986. [Google Scholar]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons. Inc.: New York, NY, USA, 1987. [Google Scholar]
- Seber, G.A.; Lee, A.J. Linear Regression Analysis, 2nd ed.; John Wiley & Sons Publication: New York, NY, USA, 2003. [Google Scholar]
- Tareghian, R.; Rasmussen, P.F. Statistical downscaling of precipitation using quantile regression. J. Hydrol. 2013, 487, 122–135. [Google Scholar] [CrossRef]
- Chen, C.; Wei, Y. Computational issues for quantile regression. Sankhyā Indian J. Stat. 2005, 67, 399–417. [Google Scholar]
- Abbasi, H.; Hanif, M.; Shahzad, U.; Emam, W.; Tashkandy, Y.; Iftikhar, S.; Shahzadi, S. Calibration Estimation of Cumulative Distribution Function Using Robust Measures. Symmetry 2023, 15, 1157. [Google Scholar] [CrossRef]
- Zaman, T. Improvement of modified ratio estimators using robust regression methods. Appl. Math. Comput. 2019, 348, 627–631. [Google Scholar] [CrossRef]
- Koc, H.; Taniş, C.; Zaman, T. Poisson regression-ratio estimators of the population mean under double sampling, with application to COVID-19. Math. Popul. Stud. 2022, 29, 226–240. [Google Scholar] [CrossRef]
(Population-1) | |||
(Population-2) | |||
0.05 | 0.10 | 0.25 | 0.50 | 0.75 | 1.00 | ||
---|---|---|---|---|---|---|---|
0.3551 | 0.7354 | 2.0264 | 4.6791 | 7.9582 | 11.8636 | ||
0.5933 | 1.1866 | 2.9665 | 5.9330 | 8.8995 | 11.8661 | ||
0.5934 | 1.1869 | 2.9673 | 5.9346 | 8.9019 | 11.8692 | ||
0.5936 | 1.1873 | 2.9683 | 5.9367 | 8.9051 | 11.8735 | ||
Population-1 | 0.5938 | 1.1876 | 2.9690 | 5.9381 | 8.9071 | 11.8762 | |
0.2499 | 0.4998 | 1.2495 | 2.4990 | 3.7485 | 4.9981 | ||
0.2499 | 0.4998 | 1.2497 | 2.4994 | 3.7491 | 4.9988 | ||
0.2501 | 0.5001 | 1.2504 | 2.5008 | 3.7512 | 5.0016 | ||
0.2505 | 0.5010 | 1.2526 | 2.5052 | 3.7579 | 5.0105 | ||
0.3781 | 0.7707 | 2.0354 | 4.4330 | 7.1925 | 10.3141 | ||
0.5257 | 1.0515 | 2.6288 | 5.2577 | 7.8866 | 10.5155 | ||
0.4995 | 0.9991 | 2.4979 | 4.9959 | 7.4938 | 9.9918 | ||
0.4809 | 0.9619 | 2.4048 | 4.8097 | 7.2146 | 9.6195 | ||
Population-2 | 0.5048 | 1.0097 | 2.5244 | 5.0489 | 7.5734 | 10.0978 | |
0.1378 | 0.2757 | 0.6892 | 1.3785 | 2.0678 | 2.7570 | ||
0.13662 | 0.2732 | 0.6831 | 1.3662 | 2.0493 | 2.7325 | ||
0.1447 | 0.2894 | 0.7236 | 1.4472 | 2.1709 | 2.8945 | ||
0.1349 | 0.2698 | 0.6746 | 1.3493 | 2.0240 | 2.6987 | ||
0.01115 | 0.02247 | 0.05743 | 0.11902 | 0.18475 | 0.25463 | ||
0.01296 | 0.02593 | 0.06484 | 0.12969 | 0.19454 | 0.25939 | ||
0.01274 | 0.02548 | 0.06370 | 0.12741 | 0.19112 | 0.25483 | ||
0.01246 | 0.02492 | 0.06232 | 0.12464 | 0.18696 | 0.24928 | ||
Population-3 | 0.01186 | 0.02373 | 0.05934 | 0.11868 | 0.17802 | 0.23737 | |
0.00128 | 0.00257 | 0.00643 | 0.01286 | 0.01929 | 0.02573 | ||
0.00123 | 0.00247 | 0.00618 | 0.01237 | 0.01856 | 0.02475 | ||
0.00127 | 0.00254 | 0.00635 | 0.01270 | 0.01905 | 0.02541 | ||
0.00147 | 0.00294 | 0.00736 | 0.01472 | 0.02208 | 0.02944 |
0.05 | 0.10 | 0.25 | 0.50 | 0.75 | 1.00 | ||
---|---|---|---|---|---|---|---|
0.7531 | 1.5063 | 3.7659 | 7.5318 | 11.2977 | 15.0637 | ||
0.7532 | 1.5065 | 3.7664 | 7.5328 | 11.2992 | 15.0656 | ||
0.7534 | 1.5068 | 3.7671 | 7.5342 | 11.3013 | 15.0684 | ||
0.7536 | 1.5073 | 3.7684 | 7.5368 | 11.3052 | 15.0736 | ||
Population-1 | 0.7541 | 1.5082 | 3.7705 | 7.5410 | 11.3116 | 15.0821 | |
0.2496 | 0.4992 | 1.2480 | 2.4961 | 3.7442 | 4.9923 | ||
0.2496 | 0.4993 | 1.2483 | 2.4966 | 3.7450 | 4.9933 | ||
0.2498 | 0.4997 | 1.2493 | 2.4987 | 3.7481 | 4.9975 | ||
0.2505 | 0.5010 | 1.2526 | 2.5052 | 3.7579 | 5.0105 | ||
0.6374 | 1.2748 | 3.1870 | 6.3740 | 9.5610 | 12.7481 | ||
0.6472 | 1.2944 | 3.2360 | 6.4720 | 9.7080 | 12.9440 | ||
0.6289 | 1.2579 | 3.1449 | 6.2899 | 9.4349 | 12.5798 | ||
0.6220 | 1.2440 | 3.1100 | 6.2201 | 9.3301 | 12.4402 | ||
Population-2 | 0.6313 | 1.2627 | 3.1569 | 6.3139 | 9.4709 | 12.6279 | |
0.1355 | 0.2711 | 0.6778 | 1.3557 | 2.0335 | 2.7114 | ||
0.1339 | 0.2678 | 0.6697 | 1.3394 | 2.0091 | 2.6788 | ||
0.1447 | 0.2894 | 0.7235 | 1.4470 | 2.1705 | 2.8940 | ||
0.1316 | 0.2633 | 0.6584 | 1.3169 | 1.9754 | 2.6339 | ||
0.01955 | 0.03910 | 0.09775 | 0.19551 | 0.29326 | 0.39102 | ||
0.01978 | 0.03956 | 0.09891 | 0.19782 | 0.29673 | 0.39565 | ||
0.01955 | 0.03911 | 0.09779 | 0.19559 | 0.29338 | 0.39118 | ||
0.01936 | 0.03872 | 0.09680 | 0.19361 | 0.29042 | 0.38723 | ||
Population-3 | 0.01904 | 0.03808 | 0.09521 | 0.19043 | 0.28564 | 0.38086 | |
0.00105 | 0.00211 | 0.00528 | 0.01057 | 0.01585 | 0.02114 | ||
0.00097 | 0.00195 | 0.00489 | 0.00978 | 0.01467 | 0.01956 | ||
0.00103 | 0.00206 | 0.00515 | 0.01031 | 0.01546 | 0.02062 | ||
0.00135 | 0.00271 | 0.00678 | 0.01357 | 0.02035 | 0.02714 |
0.05 | 0.10 | 0.25 | 0.50 | 0.75 | 1.00 | ||
---|---|---|---|---|---|---|---|
0.4105 | 0.8210 | 2.0526 | 4.1053 | 6.1579 | 8.2106 | ||
0.4091 | 0.8182 | 2.0456 | 4.0912 | 6.1368 | 8.1824 | ||
0.4070 | 0.8140 | 2.0350 | 4.0701 | 6.1052 | 8.1403 | ||
0.4031 | 0.8063 | 2.0159 | 4.0318 | 6.0477 | 8.0636 | ||
Population-1 | 0.3971 | 0.7942 | 1.9855 | 3.9710 | 5.9566 | 7.9421 | |
0.2502 | 0.5004 | 1.2511 | 2.5023 | 3.7535 | 5.0047 | ||
0.2502 | 0.5005 | 1.2512 | 2.5025 | 3.7538 | 5.0050 | ||
0.2503 | 0.5006 | 1.2516 | 2.5032 | 3.7548 | 5.0064 | ||
0.2505 | 0.5010 | 1.2526 | 2.5052 | 3.7579 | 5.0105 | ||
0.2665 | 0.5330 | 1.3325 | 2.6650 | 3.9976 | 5.3301 | ||
0.2957 | 0.5915 | 1.4789 | 2.9579 | 4.4369 | 5.9159 | ||
0.2438 | 0.4876 | 1.2190 | 2.4380 | 3.6570 | 4.8761 | ||
0.2266 | 0.4533 | 1.1333 | 2.2667 | 3.4001 | 4.5335 | ||
Population-2 | 0.2500 | 0.5001 | 1.2502 | 2.5005 | 3.7508 | 5.0011 | |
0.1425 | 0.2850 | 0.7126 | 1.4252 | 2.1379 | 2.8505 | ||
0.1421 | 0.2842 | 0.7106 | 1.4212 | 2.1318 | 2.8424 | ||
0.1447 | 0.2895 | 0.7239 | 1.4478 | 2.1717 | 2.8956 | ||
0.1415 | 0.2831 | 0.7078 | 1.4157 | 2.1235 | 2.8314 | ||
0.00847 | 0.01695 | 0.04239 | 0.08478 | 0.12718 | 0.16957 | ||
0.00758 | 0.01517 | 0.03793 | 0.07587 | 0.11380 | 0.15174 | ||
0.00844 | 0.01689 | 0.04223 | 0.08446 | 0.12669 | 0.16892 | ||
0.00925 | 0.01850 | 0.04626 | 0.09253 | 0.13880 | 0.18507 | ||
Population-3 | 0.01064 | 0.02129 | 0.05322 | 0.10645 | 0.15968 | 0.21290 | |
0.00142 | 0.00285 | 0.00714 | 0.01429 | 0.02144 | 0.02859 | ||
0.00139 | 0.00279 | 0.00699 | 0.01399 | 0.02099 | 0.02799 | ||
0.00141 | 0.00283 | 0.00709 | 0.01419 | 0.02129 | 0.02839 | ||
0.00154 | 0.00308 | 0.00772 | 0.01544 | 0.02316 | 0.03088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomair, M.A.; Shahzad, U. Compromised-Imputation and EWMA-Based Memory-Type Mean Estimators Using Quantile Regression. Symmetry 2023, 15, 1888. https://doi.org/10.3390/sym15101888
Alomair MA, Shahzad U. Compromised-Imputation and EWMA-Based Memory-Type Mean Estimators Using Quantile Regression. Symmetry. 2023; 15(10):1888. https://doi.org/10.3390/sym15101888
Chicago/Turabian StyleAlomair, Mohammed Ahmed, and Usman Shahzad. 2023. "Compromised-Imputation and EWMA-Based Memory-Type Mean Estimators Using Quantile Regression" Symmetry 15, no. 10: 1888. https://doi.org/10.3390/sym15101888
APA StyleAlomair, M. A., & Shahzad, U. (2023). Compromised-Imputation and EWMA-Based Memory-Type Mean Estimators Using Quantile Regression. Symmetry, 15(10), 1888. https://doi.org/10.3390/sym15101888