Test–Retest Reliability of the Magnitude and Direction of Asymmetry in the Countermovement Jump, Drop Jump, and Countermovement Rebound Jump
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Materials and Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Xu, J.; Turner, A.; Comfort, P.; Harry, J.R.; McMahon, J.J.; Chavda, S.; Bishop, C. A Systematic Review of the Different Calculation Methods for Measuring Jump Height during the Countermovement and Drop Jump Tests. Sports Med. 2023, 53, 1055–1072. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Read, P.; Chavda, S.; Jarvis, P.; Brazier, J.; Bromley, T.; Turner, A. Magnitude Or Direction? Seasonal Variation of Interlimb Asymmetry in Elite Academy Soccer. J. Strength Cond. Res. 2022, 36, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Abbott, W.; Brashill, C.; Turner, A.; Lake, J.; Read, P. Bilateral Vs. Unilateral Countermovement Jumps: Comparing the Magnitude and Direction of Asymmetry in Elite Academy Soccer Players. J. Strength Cond. Res. 2022, 36, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Pereira, L.A.; Reis, V.P.; Read, P.; Turner, A.N.; Loturco, I. Comparing the Magnitude and Direction of Asymmetry during the Squat, Countermovement and Drop Jump Tests in Elite Youth Female Soccer Players. J. Sports Sci. 2020, 38, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Brashill, C.; Abbott, W.; Read, P.; Lake, J.; Turner, A. Jumping asymmetries are associated with speed, change of direction speed, and jump performance in elite academy soccer players. J. Strength Cond. Res. 2021, 35, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; García-Ramos, A.; Janicijevic, D.; Delgado-García, G.; De la Cruz, J.C.; Rojas, F.J.; Cepero, M. Between-Session Reliability of Performance and Asymmetry Variables obtained during Unilateral and Bilateral Countermovement Jumps in Basketball Players. PLoS ONE 2021, 16, e0255458. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Read, P.; Chavda, S.; Jarvis, P.; Turner, A. Using Unilateral Strength, Power and Reactive Strength Tests to Detect the Magnitude and Direction of Asymmetry: A Test-Retest Design. Sports 2019, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Bronze, S.H.; McMahon, J.J. Test-retest reliability of reactive strength index variants obtained from the countermovementrebound jump. In Proceedings of the UK Strength and Conditioning Association (UKSCA) Annual Conference, 3 September 2020; Available online: https://www.uksca.org.uk/uksca-iq/article/weekly-theme-poster-week/2035/test-retest-reliabilityof-reactive-strength-index-variants-obtained-from-the-countermovement-rebound-jump (accessed on 2 September 2023).
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb Asymmetries: The Need for an Individual Approach to Data Analysis. J. Strength Cond. Res. 2021, 35, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A Vertical Jump Force Test for Assessing Bilateral Strength Asymmetry in Athletes. Med. Sci. Sports Exerc. 2007, 39, 2044. [Google Scholar] [CrossRef]
- Maloney, S.J. The Relationship between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Interlimb Asymmetries: Understanding how to Calculate Differences from Bilateral and Unilateral Tests. Strength Cond. J. 2018, 40, 1–6. [Google Scholar] [CrossRef]
- Bishop, C.; Jarvis, P.; Turner, A.; Balsalobre-Fernandez, C. Validity and Reliability of Strategy Metrics to Assess Countermovement Jump Performance using the Newly Developed My Jump Lab Smartphone Application. J. Hum. Kinet. 2022, 83, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Comyns, T.M.; Murphy, J.; O’Leary, D. Reliability, Usefulness, and Validity of Field-Based Vertical Jump Measuring Devices. J. Strength Cond. Res. 2022, 37, 1594–1599. [Google Scholar] [CrossRef] [PubMed]
- Comyns, T.M.; Brady, C.J.; Molloy, J. Effect of Attentional Focus Strategies on the Biomechanical Performance of the Drop Jump. J. Strength Cond. Res. 2019, 33, 626–632. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Stratford, C.; Comfort, P. A Proposed Method for Evaluating Drop Jump Performance with One Force Platform. Biomechanics 2021, 1, 178–189. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the Key Phases of the Countermovement Jump Force-Time Curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- Pedley, J.S.; Radnor, J.M.; Lloyd, R.S.; Oliver, J.L. Analyzing Drop Jump Ground Reaction Forces in Microsoft Excel. Strength Cond. J. 2023. [Google Scholar] [CrossRef]
- Chavda, S.; Bromley, T.; Jarvis, P.; Williams, S.; Bishop, C.; Turner, A.N.; Lake, J.P.; Mundy, P.D. Force-Time Characteristics of the Countermovement Jump: Analyzing the Curve in Excel. Strength Cond. J. 2018, 40, 67–77. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying Test-Retest Reliability using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Duthie, G.; Pyne, D.; Hooper, S. The Reliability of Video Based Time Motion Analysis. J. Hum. Mov. Stud. 2003, 44, 259–272. [Google Scholar]
- Rhea, M.R. Determining the Magnitude of Treatment Effects in Strength Training Research through the use of the Effect Size. J. Strength Cond. Res. 2004, 18, 918–920. [Google Scholar] [PubMed]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Heishman, A.; Daub, B.; Miller, R.; Brown, B.; Freitas, E.; Bemben, M. Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players. Sports. 2019, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Chavda, S.; Turner, A.N.; Comfort, P.; Haff, G.G.; Williams, S.; Bishop, C.; Lake, J.P. A Practical Guide to Analyzing the Force-Time Curve of Isometric Tasks in Excel. Strength Cond. J. 2020, 42, 26–37. [Google Scholar] [CrossRef]
- Benjanuvatra, N.; Lay, B.S.; Alderson, J.A.; Blanksby, B.A. Comparison of Ground Reaction Force Asymmetry in One-and Two-Legged Countermovement Jumps. J. Strength Cond. Res. 2013, 27, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Shrier, I.; Jordan, M. Ratio Data: Understanding Pitfalls and Knowing when to Standardise. Symmetry 2023, 15, 318. [Google Scholar] [CrossRef]
- Maloney, S.J.; Fletcher, I.M.; Richards, J. A Comparison of Methods to Determine Bilateral Asymmetries in Vertical Leg Stiffness. J. Sports Sci. 2016, 34, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, A.; Schade, F.; Walsh, M.; Brüggemann, G. Influence of Leg Stiffness and its Effect on Myodynamic Jumping Performance. J. Electromyogr. Kinesiol. 2001, 11, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Turner, A.; Jordan, M.; Harry, J.; Loturco, I.; Lake, J.; Comfort, P. A Framework to Guide Practitioners for Selecting Metrics during the Countermovement and Drop Jump Tests. J. Strength Cond. Res. 2022, 44, 95–103. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Jarvis, P.; Chavda, S.; Read, P. Considerations for Selecting Field-Based Strength and Power Fitness Tests to Measure Asymmetries. J. Strength Cond. Res. 2017, 31, 2635–2644. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Turner, A.; Read, P. Effects of Inter-Limb Asymmetries on Physical and Sports Performance: A Systematic Review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
Test/Metric | Test Session 1 | Test Session 2 | Between-Session | |||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Hedges’ g (95% CI) | Descriptor | ICC (95% CI) | CV (95% CI) | SEM | ||
CMJ | Mean Propulsive Force-L (N) | 781.30 ± 129.18 | 784.10 ± 134.34 | −0.02 (−0.10, 0.06) | Trivial | 0.98 (0.95, 0.99) | 3.07 (2.33, 3.08) | 20.17 |
Mean Propulsive Force-R (N) | 796.27 ± 134.62 | 791.06 ± 135.72 | 0.04 (−0.16, 0.23) | Trivial | 0.98 (0.96, 0.99) | 2.84 (2.16, 3.53) | 19.38 | |
Net Braking Impulse-L (N.s) | 44.15 ± 12.90 | 43.40 ± 13.18 | 0.06 (−0.03, 0.16) | Trivial | 0.38 (−0.25, 0.69) | 10.10 (7.44, 12.17) | 25.21 | |
Net Braking Impulse-R (N.s) | 47.04 ± 14.19 | 45.48 ± 15.01 | 0.10 (0.02, 0.19) | Trivial | 0.91 (0.83, 0.96) | 8.54 (6.48, 10.60) | 4.11 | |
Net Propulsive Impulse-L (N.s) | 95.45 ± 20.66 | 95.56 ± 20.46 | −0.05 (−0.38, 0.28) | Trivial | 0.97 (0.93, 0.98) | 3.85 (2.92, 4.78) | 3.67 | |
Net Propulsive Impulse-R (N.s) | 94.07 ± 22.33 | 93.77 ± 23.00 | 0.01 (−0.32, 0.34) | Trivial | 0.99 (0.98, 0.99) | 2.80 (2.12, 3.47) | 2.36 | |
CMRJ1 | Mean Propulsive Force-L (N) | 796.69 ± 140.14 | 783.76 ± 129.78 | 0.09 (0.01, 0.18) | Trivial | 0.95 (0.90, 0.97) | 3.13 (2.38, 3.89) | 30.04 |
Mean Propulsive Force-R (N) | 814.87 ± 138.86 | 798.69 ± 132.90 | 0.12 (−0.08, 0.31) | Trivial | 0.95 (0.89, 0.97) | 3.00 (2.27, 3.72) | 30.79 | |
Net Braking Impulse-L (N.s) | 43.63 ± 11.88 | 41.92 ± 17.88 | 0.11 (−0.09, 0.31) | Trivial | 0.30 (−0.42, 0.65) | 10.23 (7.76, 12.70) | 22.44 | |
Net Braking Impulse-R (N.s) | 47.14 ± 13.71 | 46.50 ± 13.47 | 0.05 (−0.04, 0.13) | Trivial | 0.95 (0.90, 0.98) | 6.33 (4.80, 7.85) | 2.99 | |
Net Propulsive Impulse-L (N.s) | 91.24 ± 20.47 | 89.67 ± 21.57 | 0.07 (−0.26, 0.40) | Trivial | 0.98 (0.96, 0.99) | 3.37 (2.55, 4.18) | 3.02 | |
Net Propulsive Impulse-R (N.s) | 90.38 ± 20.53 | 88.27 ± 20.59 | 0.10 (−0.23, 0.43) | Trivial | 0.98 (0.95, 0.99) | 3.59 (2.72, 4.46) | 3.01 | |
DJ | Mean Propulsive Force-L (N) | 929.05 ± 223.78 | 924.62 ± 217.72 | 0.02 (−0.06, 0.10) | Trivial | 0.94 (0.87, 0.97) | 5.07 (3.85, 6.30) | 54.10 |
Mean Propulsive Force-R (N) | 946.99 ± 229.29 | 964.41 ± 219.02 | −0.08 (−0.27, 0.12) | Trivial | 0.97 (0.95, 0.99) | 4.27 (3.24, 5.30) | 35.70 | |
Net Braking Impulse-L (N.s) | 83.73 ± 22.06 | 82.74 ± 13.35 | 0.05 (−0.24, 0.34) | Trivial | 0.23 (−0.54, 0.62) | 11.09 (8.41, 13.76) | 27.41 | |
Net Braking Impulse-R (N.s) | 95.85 ± 19.87 | 96.01 ± 19.64 | −0.01 (−0.09, 0.07) | Trivial | 0.19 (−0.99, 0.53) | 6.40 (4.85, 7.94) | 17.03 | |
Net Propulsive Impulse-L (N.s) | 90.61 ± 20.22 | 88.64 ± 21.51 | 0.09 (−0.24, 0.42) | Trivial | 0.97 (0.95, 0.99) | 4.43 (3.36, 5.50) | 3.33 | |
Net Propulsive Impulse-R (N.s) | 87.48 ± 21.64 | 89.24 ± 21.63 | −0.08 (−0.41, 0.25) | Trivial | 0.96 (0.92, 0.98) | 5.39 (4.09, 6.68) | 4.24 | |
CMRJ2 | Mean Propulsive Force-L (N) | 882.17 ± 221.31 | 892.21 ± 212.98 | −0.05 (−0.13, 0.04) | Trivial | 0.95 (0.90, 0.98) | 5.45 (4.14, 6.77) | 46.45 |
Mean Propulsive Force-R (N) | 915.05 ± 222.91 | 915.47 ± 215.13 | 0.00 (−0.20, 0.19) | Trivial | 0.95 (0.91, 0.98) | 4.99 (3.79, 6.20) | 45.91 | |
Net Braking Impulse-L (N.s) | 97.56 ± 22.37 | 97.00 ± 24.68 | 0.02 (−0.27, 0.31) | Trivial | 0.95 (0.91, 0.98) | 5.59 (4.24, 6.94) | 4.94 | |
Net Braking Impulse-R (N.s) | 105.43 ± 24.70 | 105.46 ± 25.28 | 0.00 (−0.08, 0.08) | Trivial | 0.96 (0.92, 0.98) | 5.32 (4.04, 6.61) | 4.90 | |
Net Propulsive Impulse-L (N.s) | 86.17 ± 18.23 | 86.20 ± 17.25 | 0.00 (−0.33, 0.33) | Trivial | 0.94 (0.89, 0.97) | 4.94 (3.75, 6.14) | 4.12 | |
Net Propulsive Impulse-R (N.s) | 88.74 ± 19.96 | 86.29 ± 18.92 | 0.12 (−0.21, 0.46) | Trivial | 0.93 (0.87, 0.97) | 5.64 (4.28, 7.00) | 4.84 |
Test/Metric | Test Session 1 | Test Session 2 | Between-Session | |||||
---|---|---|---|---|---|---|---|---|
Asymmetry % | Asymmetry % | Hedges’ g (95% CI) | Descriptor | ICC (95% CI) | CV (95% CI) | SEM | ||
CMJ | Mean Propulsive Force | 2.59 ± 1.73 | 2.56 ± 1.68 | 0.02 (−0.07, 0.10) | Trivial | 0.75 (0.49, 0.88) | 29.48 (22.37, 36.06) | 0.76 |
Net Braking Impulse | 10.93 ± 8.24 | 14.43 ± 15.09 | −0.29 (−0.41, 0.18) | Small | 0.76 (0.51, 0.89) | 28.88 (21.91, 35.85) | 6.75 | |
Net Propulsive Impulse | 5.39 ± 5.13 | 5.80 ± 4.11 | −0.13 (−0.22, 0.04) | Trivial | 0.78 (0.56, 0.89) | 36.11 (27.44, 42.82) | 1.97 | |
CMRJ1 | Mean Propulsive Force | 2.53 ± 1.54 | 2.53 ± 2.04 | 0.00 (−0.08, 0.08) | Trivial | 0.78 (0.55, 0.89) | 30.29 (22.99, 37.60) | 0.77 |
Net Braking Impulse | 12.70 ± 8.30 | 14.34 ± 12.19 | −0.16 (−0.25, −0.06) | Trivial | 0.75 (0.50, 0.88) | 20.74 (15.74, 25.75) | 4.66 | |
Net Propulsive Impulse | 5.78 ± 3.36 | 6.16 ± 4.78 | −0.09 (−0.18, 0.00) | Trivial | 0.78 (0.55, 0.89) | 30.96 (23.49, 38.43) | 1.75 | |
DJ | Mean Propulsive Force | 3.72 ± 3.42 | 4.57 ± 3.54 | −0.24 (−0.34, −0.13) | Small | 0.86 (0.70, 0.93) | 28.16 (21.34, 34.95) | 1.24 |
Net Braking Impulse | 11.39 ± 9.14 * | 10.60 ± 9.74 * | 0.07 (−0.02, 0.15) | Trivial | 0.73 (0.45, 0.87) | 30.64 (23.25, 38.04) | 4.35 | |
Net Propulsive Impulse | 7.92 ± 6.05 | 8.08 ± 5.72 | −0.03 (−0.11, 0.06) | Trivial | 0.73 (0.45, 0.87) | 35.46 (26.90, 44.01) | 2.71 | |
CMRJ2 | Mean Propulsive Force | 3.50 ± 2.97 | 3.15 ± 3.05 | 0.11 (0.02, 0.20) | Trivial | 0.76 (0.52, 0.88) | 33.82 (25.66, 41.97) | 1.32 |
Net Braking Impulse | 7.39 ± 5.58 * | 7.71 ± 6.20 * | −0.05 (−0.14, 0.03) | Trivial | 0.73 (0.44, 0.88) | 38.51 (27.62, 45.19) | 2.63 | |
Net Propulsive Impulse | 6.39 ± 4.88 | 6.81 ± 4.55 | −0.09 (−0.17, 0.00) | Trivial | 0.77 (0.54, 0.89) | 37.39 (28.37, 46.42) | 2.03 |
Test/Metric | Session 1 to Session 2 Kappa | Descriptor | |
---|---|---|---|
CMJ | Mean Propulsive Force | 0.70 | Substantial |
Net Braking Impulse | 0.63 | Substantial | |
Net Propulsive Impulse | 0.70 | Substantial | |
CMRJ1 | Mean Propulsive Force | 0.59 | Moderate |
Net Braking Impulse | 0.68 | Substantial | |
Net Propulsive Impulse | 0.94 | Almost perfect | |
DJ | Mean Propulsive Force | 0.81 | Almost perfect |
Net Braking Impulse | 0.67 | Substantial | |
Net Propulsive Impulse | 0.58 | Moderate | |
CMRJ2 | Mean Propulsive Force | 0.54 | Moderate |
Net Braking Impulse | 0.19 | Slight | |
Net Propulsive Impulse | 0.57 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Jordan, M.J.; Chavda, S.; Turner, A.; Bishop, C. Test–Retest Reliability of the Magnitude and Direction of Asymmetry in the Countermovement Jump, Drop Jump, and Countermovement Rebound Jump. Symmetry 2023, 15, 1960. https://doi.org/10.3390/sym15101960
Xu J, Jordan MJ, Chavda S, Turner A, Bishop C. Test–Retest Reliability of the Magnitude and Direction of Asymmetry in the Countermovement Jump, Drop Jump, and Countermovement Rebound Jump. Symmetry. 2023; 15(10):1960. https://doi.org/10.3390/sym15101960
Chicago/Turabian StyleXu, Jiaqing, Matthew J. Jordan, Shyam Chavda, Anthony Turner, and Chris Bishop. 2023. "Test–Retest Reliability of the Magnitude and Direction of Asymmetry in the Countermovement Jump, Drop Jump, and Countermovement Rebound Jump" Symmetry 15, no. 10: 1960. https://doi.org/10.3390/sym15101960
APA StyleXu, J., Jordan, M. J., Chavda, S., Turner, A., & Bishop, C. (2023). Test–Retest Reliability of the Magnitude and Direction of Asymmetry in the Countermovement Jump, Drop Jump, and Countermovement Rebound Jump. Symmetry, 15(10), 1960. https://doi.org/10.3390/sym15101960