A Comparative Numerical Study of the Symmetry Chaotic Jerk System with a Hyperbolic Sine Function via Two Different Methods
Abstract
:1. Introduction
2. Preliminaries and Basic Definitions
3. Numerical Scheme for the ABC Fractional Derivative
4. Applications of the ABC-FD Scheme
5. The New Iterative Laplace Method (NILM)
5.1. New Iterative Method
5.2. New Iterative Laplace Method
6. Application of the New Iterative Laplace Method
7. Numerical Results and Discussions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samko, G.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Carpinteri, A.; Mainardi, F. (Eds.) Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A.; Mainardi, F. (Eds.) Springer: Vienna, Austria; New York, NY, USA, 1997; pp. 277–290. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Baleanu, D.; Karaca, Y.; Vazquez, L.; Macias-Diaz, J.E. Advanced fractional calculus, differential equations and neural networks: Analysis, modeling and numerical computations. Phys. Scr. 2023, 98, 110201. [Google Scholar] [CrossRef]
- Mobayen, S.; Baleanu, D.; Tchier, F. Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems. J. Vib. Control. 2017, 23, 2912–2925. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Xie, H.P.; Chen, F.L. Chaos synchronization of fractional chaotic maps based on the stability condition. Phys. A Stat. Mech. Appl. 2016, 460, 374–383. [Google Scholar] [CrossRef]
- Petráš, I. A Note on the Fractional-Order Chua’s System. Chaos Solitons Fractals 2006, 38, 140–147. [Google Scholar] [CrossRef]
- Lai, Q.; Akgul, A.; Li, C.; Xu, G.; Çavuşoğlu, Ü. A New Chaotic System with Multiple Attractors: Dynamic Analysis, CircuitRealization and S-Box Design. Entropy 2017, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Shekofteh, Y.; Akgül, A.; Li, C.; Panahi, S. A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation. Entropy 2018, 20, 86. [Google Scholar] [CrossRef] [PubMed]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden Attractors in Dynamical Systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Alexan, W.; Alexan, N.; Gabr, M. Multiple-Layer Image Encryption Utilizing Fractional-Order Chen Hyperchaotic Map and Cryptographically Secure PRNGs. Fractal Fract. 2023, 7, 287. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I. Extended Stability and Control Strategies for Impulsive and Fractional Neural Networks: A Review of the Recent Results. Fractal Fract. 2023, 7, 289. [Google Scholar] [CrossRef]
- Mohammed, O.; Abdeljawad, P. Discrete Generalized Fractional Operators Defined Using H-Discrete Mit-tag-Leffler Kernels and Applications to AB Fractional Difference Systems. Math. Methods Appl. Sci. 2023, 46, 7688–7713. [Google Scholar] [CrossRef]
- Matouk, A.E.; Almutairi, D.K.; Herzallah, M.A.E.; Abdelkawy, M.A.; Abdelhameed, T.N. Symmetry in a Fractional-Order Multi-Scroll Chaotic System Using the Extended Caputo Operator. Symmetry 2023, 15, 1582. [Google Scholar]
- Belgacem, F.B.M.; Silambarasan, R.; Zakia, H.; Mekkaoui, T. New and Extended Applications of the Natural and SumuduTransforms: Fractional Diffusion and Stokes Fluid Flow Realms. In Trends in Mathematics; Springer: Singapore, 2017; pp. 107–120. [Google Scholar]
- Abdoon, M.A.; Saadeh, R.; Berir, M.; EL Guma, F.; Ali, M. Analysis, Modeling and Simulation of a Fractional-Order Influenza Model. Alex. Eng. J. 2023, 74, 231–240. [Google Scholar] [CrossRef]
- Abdoon, M.A.; Hasan, F.L. Advantages of the Differential Equations for Solving Problems in Mathematical Physics with Symbolic Computation. Math. Model. Eng. Probl. 2022, 9, 268–276. [Google Scholar] [CrossRef]
- Abdoon, M.A.; Hasan, F.L.; Taha, N.E. Computational Technique to Study Analytical Solutions to the Fractional Modified KDV-Zakharov-Kuznetsov Equation. Abstr. Appl. Anal. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Wu, Y.; Qi, Y.; Ren, F.; Li, S. A High-Speed Pseudo-Random Bit Generator Driven by 2D-Discrete Hyperchaos. Chaos Solitons Fractals 2023, 167, 113039. [Google Scholar] [CrossRef]
- Ahmed, S. An Efficient Method for the Fractional Electric Circuits Based on Fibonacci Wavelet. Results Phys. 2023, 52, 106753. [Google Scholar] [CrossRef]
- Elbadri, M. An approximate solution of a time fractional Burgers’ equation involving the Caputo-Katugampola fractional derivative. Partial. Differ. Equ. Appl. Math. 2023, 8, 100560. [Google Scholar] [CrossRef]
- Almutairi, D.; Khalid, M.A.; Abdoon, M.; Berir, R.; Saadeh, A. A Numerical Confirmation of a Fractional SEITR for Influenza Model Efficiency. Appl. Math. 2023, 175, 741–749. [Google Scholar]
- Yu, S.; Lu, J.; Leung, H.; Chen, G. Design and Implementation of N-Scroll Chaotic Attractors from a General Jerk Circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 1459–1476. [Google Scholar]
- Zhang, Q.; Shang, Y.; Li, Y.; Cui, N.; Duan, B.; Zhang, C. A Novel Fractional Variable-Order Equivalent Circuit Model and Parameter Identification of Electric Vehicle Li-Ion Batteries. ISA Trans. 2020, 97, 448–457. [Google Scholar] [CrossRef]
- Abdullah, M.A.; Rahman, A.R.A.R.A.G.A.; Ageeb, A.H.E.; Suliman, A.A.B. Transfer Function and Z-Transform of an Electrical System in MATLAB/Simulink. Eur. J. Math. Stat. 2023, 4, 9–20. [Google Scholar] [CrossRef]
- Chunxia, L.; Jie, Y.; Xiangchun, X.; Limin, A.; Yan, Q.; Yongqing, F. Research on the Multi-Scroll Chaos Generation Based on Jerk Mode. Procedia Eng. 2012, 29, 957–961. [Google Scholar] [CrossRef]
- Yalçin, M.E. Multi-Scroll and Hypercube Attractors from a General Jerk Circuit Using Josephson Junctions. Chaos Solitons Fractals 2007, 34, 1659–1666. [Google Scholar] [CrossRef]
- Sprott, J.C. Some Simple Chaotic Jerk Functions. Am. J. Phys. 1997, 65, 537–543. [Google Scholar] [CrossRef]
- Sprott, J.C. Simplest Dissipative Chaotic Flow. Phys. Lett. A 1997, 228, 271–274. [Google Scholar] [CrossRef]
- Samosir, A.; Saudi, T.; Sutikno, L. Simple Formula for Designing the PID Controller of a DC-DC Buck Converter. Int. J. Power Electron. Drive Syst. 2023, 14, 273. [Google Scholar] [CrossRef]
- Srisuchinwong, B.; Nopchinda, D. Current-tunable Chaotic Jerk Oscillator. Electron. Lett. 2013, 49, 587–589. [Google Scholar] [CrossRef]
- Grube, A.; Shamsabadi, A.A.; Firouzjaei, M.D.; Mohamed, S.I.G.P.; Hilger, L.; Elliott, M.; McKenzie, K.; Bavarian, M. Emperor’s New Clothes: Novel Textile-Based Supercapacitors Using Sheep Wool Fiber as Electrode Substrate. Nano Trends 2023, 3, 100014. [Google Scholar] [CrossRef]
- Muthuswamy, B.; Chua, L.O. Simplest Chaotic Circuit. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2010, 20, 1567–1580. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An Iterative Method for Solving Nonlinear Functional Equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Bhangale, N.; Kachhia, K.B.; Gómez-Aguilar, J.F. A New Iterative Method with ρ-Laplace Transform for Solving Fractional Differential Equations with Caputo Generalized Fractional Derivative. Eng. Comput 2022, 38, 2125–2138. [Google Scholar] [CrossRef]
- Khan, M.J.; Nawaz, R.; Farid, S.; Iqbal, J. New Iterative Method for the Solution of Fractional Damped Burger and Fractional Sharma-TassoOlver Equations. Complexity 2018, 2018, 3249720. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Elzaki, T.M.; Chamekh, M. New Transform Iterative Method for Solving Some Klein-Gordon Equations. Results Phys. 2018, 10, 655–659. [Google Scholar] [CrossRef]
- Toufik, M.; Atangana, A. New Numerical Approximation of Fractional Derivative with Non-Local and Non-Singular Kernel:Application to Chaotic Models. Eur. Phys. J. Plus 2017, 132, 444. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K. Fractal Calculus and its Applications: Fα-Calculus; World Scientific Publishing Co., Ltd.: Singapore, 2023. [Google Scholar]
- Atangana, A.; Baleanu, D. New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Karaoğlan, A.; Ragusa, M.A.; Set, E. Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions. J. Funct. Spaces 2021, 2021, 1055434. [Google Scholar] [CrossRef]
- Qazza, A.; Abdoon, M.; Saadeh, R.; Berir, M. A New Scheme for Solving a Fractional Differential Equation and a Chaotic System. Eur. J. Pure Appl. Math 2023, 2023, 1128–1139. [Google Scholar] [CrossRef]
- Argyris, J.; Faust, G.; Haase, M.; Friedrich, R. (Eds.) Dynamical systems with dissipation. In An Exploration of Dynamical Systems and Chaos; Springer: Berlin/Heidelberg, Germany, 2015; pp. 189–298. [Google Scholar]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Physical D 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Kumar, S.; Bhagwan, J.; Jäntschi, L. Optimal Derivative-Free One-Point Algorithms for Computing Multiple Zeros of Nonlinear Equations. Symmetry 2022, 14, 1881. [Google Scholar] [CrossRef]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R.; Kanwar, V. An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithms 2016, 71, 775–796. [Google Scholar] [CrossRef]
- Sharma, J.R.; Kumar, S.; Jäntschi, L. On derivative free multiple-root finders with optimal fourth order convergence. Mathematics 2020, 8, 1091. [Google Scholar] [CrossRef]
- Sharma, J.R.; Kumar, D.; Jäntschi, L. On a reduced cost higher order Traub-Steffensen-Like method for nonlinear systems. Symmetry 2019, 11, 891. [Google Scholar] [CrossRef]
- Elbadri, M.; Abdoon, M.A.; Berir, M.; Almutairi, D.K. A Symmetry Chaotic Model with Fractional Derivative Order via Two Different Methods. Symmetry 2023, 15, 1151. [Google Scholar] [CrossRef]
- Saadeh, R.; Abdoon, M.; Qazza, A.; Berir, M. A Numerical Solution of Generalized Caputo Fractional Initial Value Problems. Fractal Fract. 2023, 7, 332. [Google Scholar] [CrossRef]
- Elbadri, M.; Ahmed, S.A.; Abdalla, Y.T.; Hdidi, W. A New Solution of Time-Fractional Coupled KdV Equation by Using Natural Decomposition Method. Abstr. Appl. Anal. 2020, 2020, 3950816. [Google Scholar] [CrossRef]
- Elbadri, M. Initial Value Problems with Generalized Fractional Derivatives and Their Solutions via Generalized Laplace Decomposition Method. Adv. Math. Phys. 2022, 2022, 3586802. [Google Scholar]
- Elbadri, M. A Numerical Solution and Comparative Study of the Symmetric Rossler Attractor with the Generalized Caputo Fractional Derivative via Two Different Methods. Mathematics 2023, 11, 2997. [Google Scholar] [CrossRef]
0.090976942328261 | 0.081191356188869 | 0.177322835208675 | |
0.090969016611603 | 0.081174043332743 | 0.177301836131932 | |
0.090965053816737 | 0.081165386973051 | 0.177291336693722 | |
0.090963072435248 | 0.081161058810380 | 0.177286086999779 | |
0.090962411977118 | 0.081159616092040 | 0.177284337105534 | |
0.090962081748498 | 0.081158894733348 | 0.177283462159113 |
0.070352357852901 | −0.009929541563750 | 0.046646357032531 | |
0.070372731184257 | −0.009990601272302 | 0.046497044647704 | |
0.070382994076053 | −0.010021089970340 | 0.070382994076053 | |
0.070388144603155 | −0.010036324181601 | 0.046385167861274 | |
0.070390724614794 | −0.010043938809839 | 0.046366530599472 | |
0.070392015699256 | −0.010047745802063 | 0.046357212549094 |
t | (α = 1) | ABC-FD (α = 1) | RK4 | NILM (α = 0.95) | ABC-FD (α = 0.95) |
---|---|---|---|---|---|
0 | 0.1 | 0.1 | 0.1 | 0.1 | |
0.1 | 0.090962081748498 | 0.090961091064418 | 0.089869861689729 | ||
0.2 | 0.083697708763766 | 0.083696921816189 | 0.082568219065243 | ||
0.3 | 0.078003841100781 | 0.078003234241056 | 0.077182566037544 | ||
0.4 | 0.073696270254762 | 0.073695822106252 | 0.073330615652345 | ||
0.5 | 0.070608058099706 | 0.070607749243106 | 0.070743324321391 | ||
0.6 | 0.068587112593472 | 0.068586925294057 | 0.069208376289489 | ||
0.7 | 0.067494081299899 | 0.067493999271994 | 0.068548994446406 | ||
0.8 | 0.067200527940728 | 0.067200536145170 | 0.068613188755336 | ||
0.9 | 0.067587361436780 | 0.067587445907686 | 0.069267344857624 | ||
1 | 0.068543490599299 | 0.068543638296846 | 0.070392015699256 |
t | (α = 1) | ABC-FD (α = 1) | RK4 | NILM (α = 0.95) | ABC-FD (α = 0.95) |
---|---|---|---|---|---|
0 | 0.1 | 0.1 | 0.1 | 0.1 | |
0.1 | 0.081158894733348 | 0.081156730659191 | 0.078697858340013 | ||
0.2 | 0.064468469882468 | 0.064466554822516 | 0.061441045771581 | ||
0.3 | 0.049715435020836 | 0.049713744539749 | 0.046778652926444 | ||
0.4 | 0.036713809022460 | 0.036712322078024 | 0.034214331286817 | ||
0.5 | 0.025303570580615 | 0.025302269090408 | 0.023434830115426 | ||
0.6 | 0.015347290438630 | 0.015346158895808 | 0.014214221188707 | ||
0.7 | 0.006727134723188 | 0.006726159855136 | 0.006379687559002 | ||
0.8 | −0.006072763194211767 | −0.000657806050452 | −0.000658635586089 | −0.00886902358831887 | −0.000205320463951 |
0.9 | −0.015364933248198126 | −0.006893901927439 | −0.006894595814113 | −0.01893301278653764 | −0.005651002981482 |
1 | −0.024668550097187616 | −0.012055116925426 | −0.012055683430509 | −0.029420582762232722 | −0.010047745802063 |
t | (α = 1) | ABC-FD (α = 1) | RK4 | NILM (α = 0.95) | ABC-FD (α = 0.95) |
---|---|---|---|---|---|
0 | 0.2 | 0.2 | 0.2 | 0.2 | |
0.1 | 0.177283462159113 | 0.177280837322658 | 0.174285678175172 | ||
0.2 | 0.156883877304611 | 0.156881515372682 | 0.153093618621189 | ||
0.3 | 0.138486158092275 | 0.138484022799073 | 0.134632104456653 | ||
0.4 | 0.121812504013073 | 0.121810563716953 | 0.118257375299824 | ||
0.5 | 0.106620815236158 | 0.106619042407072 | 0.023434830115426 | ||
0.6 | 0.092700733181998 | 0.092699103953248 | 0.090206130934548 | ||
0.7 | 0.079870166941685 | 0.079868660717431 | 0.077984463211127 | ||
0.8 | 0.067972243760504 | 0.067970842871361 | 0.066697932709398 | ||
0.9 | 0.056872629123477 | 0.056871318523386 | 0.056195836458403 | ||
1 | 0.046457168423638 | 0.046455935422015 | 0.046357212549094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, A.B.M.; Abdoon, M.A.; Elbadri, M.; Berir, M.; Elgezouli, D.E. A Comparative Numerical Study of the Symmetry Chaotic Jerk System with a Hyperbolic Sine Function via Two Different Methods. Symmetry 2023, 15, 1991. https://doi.org/10.3390/sym15111991
Alzahrani ABM, Abdoon MA, Elbadri M, Berir M, Elgezouli DE. A Comparative Numerical Study of the Symmetry Chaotic Jerk System with a Hyperbolic Sine Function via Two Different Methods. Symmetry. 2023; 15(11):1991. https://doi.org/10.3390/sym15111991
Chicago/Turabian StyleAlzahrani, Abdulrahman B. M., Mohamed A. Abdoon, Mohamed Elbadri, Mohammed Berir, and Diaa Eldin Elgezouli. 2023. "A Comparative Numerical Study of the Symmetry Chaotic Jerk System with a Hyperbolic Sine Function via Two Different Methods" Symmetry 15, no. 11: 1991. https://doi.org/10.3390/sym15111991
APA StyleAlzahrani, A. B. M., Abdoon, M. A., Elbadri, M., Berir, M., & Elgezouli, D. E. (2023). A Comparative Numerical Study of the Symmetry Chaotic Jerk System with a Hyperbolic Sine Function via Two Different Methods. Symmetry, 15(11), 1991. https://doi.org/10.3390/sym15111991