Next Article in Journal
Editorial Summary: Mathematical Models and Methods in Various Sciences
Previous Article in Journal
Joint Model for Estimating the Asymmetric Distribution of Medical Costs Based on a History Process
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multi Polar q-Rung Orthopair Fuzzy Graphs with Some Topological Indices

1
Department of Mathematics and Statistics, Riphah International University, I-14, Islamabad 44000, Pakistan
2
Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(12), 2131; https://doi.org/10.3390/sym15122131
Submission received: 18 October 2023 / Revised: 15 November 2023 / Accepted: 16 November 2023 / Published: 30 November 2023

Abstract

:
The importance of symmetry in graph theory has always been significant, but in recent years, it has become much more so in a number of subfields, including but not limited to domination theory, topological indices, Gromov hyperbolic graphs, and the metric dimension of graphs. The purpose of this monograph is to initiate the idea of a multi polar q-rung orthopair fuzzy graphs (m- PqROPFG ) as a fusion of multi polar fuzzy graphs and q-rung orthopair fuzzy graphs. Moreover, for a vertex of multi polar q-rung orthopair fuzzy graphs, the degree and total degree of the vertex are defined. Then, some product operations, inclusive of direct, Cartesian, semi strong, strong lexicographic products, and the union of multi polar q-rung orthopair fuzzy graphs (m- PqROPFG s ) , are obtained. Also, at first we define some degree based fuzzy topological indices of m- PqROPFG . Then, we compute Zareb indices of the first and second kind, Randic indices, and harmonic index of a m- PqROPFG .

1. Introduction

The theory of a fuzzy subset of a set was put forward in 1965 by Zadeh [1]. He generalized crisp set by providing membership grades to each member of the set from the interval [ 0 , 1 ] . Since than, the fuzzy set theory has developed into a robust discipline of research in different fields inclusive of graph theory, social science, decision making, medical field, management, artificial intelligence and engineering. The technique that offers coherence in the ranking of alternatives under multiple criterion is familiar as Multi criteria decision making (MCDM). Through these processes decision makers provides a feasible decision while considering a set multiple criteria. To fulfil their requirements and pursue an optimal alternative, this technique helps them in the hierarchy of short listed alternatives. Being inspired by the idea of bi-polar fuzzy sets which was established by Zhang ( 1994 ) [2,3], Chen et al. ( 2014 ) [4] proposed an augmentation of fuzzy set known as m-polar fuzzy set. In an m-polar fuzzy set the assessment of the membership grade of a member with m different attributes lies in [ 0 , 1 ] m , and all its respective membership grades are captured by following the same procedure. He indicated that 2-polar fuzzy sets and bipolar fuzzy sets are cryptographic mathematical ideas and that can acquire compactly one from the corresponding one [4]. In real world problems the data are sporadically collected from i agents ( i 2 ) this is the concept behind “multipolar information”. For example, in neurobiology, a lot of information is gathered by multi-polar neurons from other neurons in the brain. Some characteristics of m-polar fuzzy sets and several algebraic operations were introduced by Naeem et al. [5]. Multi-polar technology is designed to meet the needs of wide-ranging systems in information technology. In the last decades, the focus of many researchers has been shifted to imperfect, uncertain and vague information related problems. With the intention of dealing with such problems, Atanassov [6] put forward an augmentation of the fuzzy set by virtue of the membership and the non-membership functions, familiar as intuitionistic fuzzy set (IFS). Yager [7] established the notion of Pythagorean fuzzy set (PFS) as an extended form of Atanassov’s intuitionistic fuzzy set. Subtraction and division over Pythagorean fuzzy numbers are presented by Peng [8]. He also explored their characteristics such as boundedness, idempotency and monotonicity. Hashmi and Riaz [9] introduced an innovative idea of Pythagorean m-polar fuzzy sets and a few fundamental operations on these sets. In 2019, Hashmi [10] expressed the concept of m-polar neutrosophic set. Yager [11] in 2017 , established the concept of q-rung orthopair fuzzy sets (q-ROFS), which is abstraction of (IFS) and (PFS). For the q-ROFSs, the membership and non-membership function need to fulfil the following condition ( μ ( ς ) ) q + ( υ ( ς ) ) q 1 , where q 1 and μ ( ς ) [ 0 , 1 ] , υ ( ς ) [ 0 , 1 ] here the span of information expression is determined by parameter q. The span of information expression becomes larger as q increases. q-ROFSs came up with more flexibility to make assessments with reference to membership and non-membership functions as in contrast with IFSs and PFSs. Ali [12] studied the uncertainty index H F ( ς ) which depends on the orbit where the point ( μ ( ς ) , υ ( ς ) ) is situated. In 2021, Riaz et al. [13], introduced a hybrid model of the m-polar fuzzy set and q-rung orthopair fuzzy set, familiar as m-polar q-rung orthopair fuzzy set. Toward uncertainty, a q-ROmPFS is more elastic and superior approach as compared with the prior approaches of intuitionistic m-polar fuzzy sets and Phythagorean m-polar fuzzy sets.
Graphs are diagrammatical representations of decision making problems. By utilizing this convenient appliance vertices and edges are used to demonstrate the decision-making objects and their relationships. In 1973, Kaufmann [14] initiated the rudimentary notion of fuzzy graph. Some advanced concepts of fuzzy graphs were discovered by Rosenfeld [15] in 1975. Rosenfeld also discussed the fuzzy relations between fuzzy sets. Bhattacharya ( 1987 ) [16] defined certain concepts of fuzzy cut vertices and fuzzy bridges with reference to connectivity. Mordeson and Nair [17] explored a number of new ideas of fuzzy graphs. Nagoorani and Latha [18,19] investigated irregular fuzzy graphs and degree and order of intuitionistic fuzzy graphs. Many new ideas, comprising of bipolar fuzzy graphs, irregular bipolar fuzzy graphs, bipolar fuzzy digraph in decision support system, m-polar fuzzy graphs, m-polar fuzzy line graphs and certain metrics in m-polar fuzzy graphs were established by Akram et al. [20,21,22,23,24,25,26]. With different representation, numerous different types of graphs have been initiated for decision-making information, such as Pythagorean fuzzy graph [27] and single-valued neutrosophic graphs [28]. In 2014 Samanta [29] introduced m-step neighbourhood graph which is generalization of fuzzy competition graph. Based on q-ROFSs, a new form of graph has been created by Habib et al. [30] in 2019 , which is named as q-rung orthopair fuzzy graph (q-ROFG). Rashmanlou and others in [31,32,33,34] added some interesting results to generalized fuzzy graphs.
Product operations of graphs are large and essential part of graph theory. Mordeson and Peng [35,36] defined a number of product operations on fuzzy graphs. Later, for different kinds of product operations of fuzzy graphs, the degree of the vertices was obtained by Nirmala in 2012 [37]. Sahoo and Pal [38,39] defined product operations on IFGs and also estimated the degree of vertex in IFGs. The number of product operations on fuzzy hypergraphs were introduced by Gong and Wang [38]. On interval-valued fuzzy graphs Rashmanlou et al. [40] established product operations and degree of a vertex for these graphs was also investigated. Single-valued neutrosophic graphs SVNGs were initiated by Naz et al. [28] in the scenario of multi-criteria decision-making, also several product operations on SVNGs were obtained. Latterly, Akram et al. [27] explored product operations for Pythagorean fuzzy graphs and for a vertex in PFGs the degree and total degree were defined. In 2019, Songyi et al. [41] defined product operations on q-ROPFGs.
In mathematical chemistry its topology branch is known as chemical graph theory which deals with the combination of graph theory and chemistry. For a chemical phenomena we applied graph theory to its mathematical model in chemical graph theory. The graph invariant of a graph which is a numerical parameter is known as a topological index as the topology of the graph is characterized with the help of this numeric value. Topological indices are utilized in the advancement of (QSAR) Quantative Structure Activity Relationships. These indices play important role to demonstrate the properties of molecules or biological activities which are correlated with their chemical structure. Several indices were initiated due to their application in chemistry such as Zagreb indices, Randic, Harmonic and Gutman indices but the first developed topological index is the Wiener index or Wiener number. In 1997 , It was Xu [42] who introduced the application of fuzzy graph in chemical sciences. In 2019, Mordeson et al. [43] defined connectivity index and Wiener index in fuzzy graphs. Naeem [44] developed some connectivity indices in the context of IFG in 2021. He introduced two kinds of connectivity index and average connectivity index in the environment of IFGs. Kalathian et al. [45] developed fuzzy Zagreb indices of first and second kind, fuzzy Randic index and fuzzy Harmonic index. Some topological indices for intuitionistic fuzzy graph were presented by Dinar et al. [46] in 2023.

2. Preliminaries

This section presents a study of some rudimentary notions that will be beneficial to understand the current monograph.
Definition 1 ([1]). 
For a set of discourse U , a fuzzy set B is expressed in a well known format,
B = ς , μ B ( ς ) : ς U ,
where membership function of fuzzy set B is portryed by μ B ( ς ) : 0 , 1 .
Definition 2 ([4]). 
An m-polar fuzzy set ( M P F S ) on a non empty set U is a mapping A : U [ 0 , 1 ] m , for a natural number m. m ( U ) is used to denote the set of all m-polar fuzzy set on U . Where 1 = ( 1 , 1 , , 1 ) is the largest value in [ 0 , 1 ] m and the smallest value in [ 0 , 1 ] m is 0 = ( 0 , 0 , , 0 ) .
Definition 3 ([6]). 
Let U be a universe of discourse. Then a set C is considered as intuitionistic fuzzy set if C is a mapping in the form C = ς ; μ C ( ς ) , υ C ( ς ) : ς U , where, μ C ( ς ) and υ C ( ς ) are taken from the interval 0 , 1 . These are used to define the membership grade and non-memembership grade of the element ς U , respectively, to the set C with 0 μ C ( ς ) + υ C ( ς ) 1 for each ς U .
Definition 4 ([11]). 
On a set of discourse U . We define a set A for q 1 , in the given format
A = ς , ( μ A ( ς ) , ( υ A ς : 0 ( μ A ( ς ) ) q + ( υ A ( ς ) ) q 1 : ς U ,
A is familiar as q-rung orthopair fuzzy set (q-ROPFS). We take μ A ( ς ) and υ A ( ς ) from the interval 0 , 1 and these values are used to porty the membership grade and non-membership grade of ς U .
Definition 5. 
A set F on a set of discourse U is introduced as an multi polar q-rung orthopair fuzzy set (m- PqROPFs ) if it is established in the following form,
F = ς , ( μ F 1 ς , μ F 2 ς , , μ F m ς ) , ( υ F 1 ς , υ F 2 ς , , υ F m ς ) : ς U ,
where μ F 1 ς μ F 2 ς μ F m ς , υ F 1 ς υ F 2 ς υ F m ς , 0 μ F i ς q + υ F i ς q 1 ,   q 1 and i = 1 , 2 , , m . Here we take μ F i ς and υ F i ς in descending and ascending order, respectively, but it is not necessary condition for m- PqROPFs .
We denote multi polar q-rung orthopair fuzzy set
F = ς , ( μ F 1 ς , μ F 2 ς , , μ F m ς , ( υ F 1 ς , υ F 2 ς , , υ F m ς ) : ς U ,
by F = ς , μ F ς , υ F ς : ς j , where μ F ς = ( μ F 1 ς , μ F 2 ς , , μ F m ς ) and υ F ς = ( υ F 1 ς , υ F 2 ς , , υ F m ς ) .
Example 1. 
Let U = { a , b , c } be a universe of discourse. The 2-polar 3-rung orthopair fuzzy set F is given below:
F = ( ( 0.7 , 0.6 ) , 0.8 , 0.9 ) a , ( 0.9 , 0.7 , 0.5 , 0.8 ) b , ( 0.8 , 0.6 , 0.7 , 0.9 ) c .
Definition 6. 
Consider two multi polar q-rung orthopair fuzzy sets L and S on a set U , given below:
L = ς : ( μ L 1 ς , μ L 2 ς , , μ L m ς ) , ( υ L 1 ς , υ L 2 ς , , υ L m ς ) : ς U , a n d S = ς : ( μ S 1 ς , μ S 2 ς , , μ S m ς ) , ( υ S 1 ς , υ S 2 ς , , υ S m ς ) : ς U .
Some relations and operations are defined below:
(i) 
Inclusion
L S μ L i ς μ S i ς a n d υ L i ς υ S i ς ; i = 1 , 2 , , m a n d ς U L = S L S a n d S L .
(ii) 
Complement
L ¯ = { ς : ( υ L m ς , υ L m 1 ς , , υ L 1 ς ) , ( μ L m ς , μ L m 1 ς , , μ L 1 ς ) : ς U } .
(iii) 
Union ( L S ) : In ( L S ) we obtained the membership and non-membership grades by following way:
μ L S i ( ς ) = μ L i ς μ S i ς , υ L S i ( ς ) = υ L i ς υ S i ς , i = 1 , 2 , , m a n d ς U .
(iv) 
Intersection ( L S ) : In ( L S ) we obtained the membership and non-membership grades by following way:
μ L S i ( ς ) = μ L i ς μ S i ς , υ L S i ( ς ) = υ L i ς υ S i ς , i = 1 , 2 , , m a n d ς U .
(v) 
Addition ( L S ) : In ( L S ) we obtained the membership and non-membership grades by following way:
μ L S i ( ς ) = μ L i ς + μ S i ς μ L i ς · μ S i ς , υ L S i ( ς ) = υ L i ς · υ S i ς , i = 1 , 2 , , m a n d ς U .
(vi) 
Multiplication ( L S ) : In ( L S ) the membership and non-membership grades are obtained as:
μ L S i ( ς ) = μ L i ς · μ S i ς , υ L S i ( ς ) = υ L i ς + υ S i ς υ L i ς · υ S i ς , i = 1 , 2 , , m a n d ς U .
(vii) 
Alpha-beta cut ( α i , β i ) - c u t : Let
L = ς : ( μ L 1 ς , μ L 2 ς , , μ L m ς ) , ( υ L 1 ς , υ L 2 ς , . . . , υ L m ς : ς U
be a m- PqROPFs . Let α i , β i [ 0 , 1 ] such that 0 α i q + β i q 1 . Then ( α i , β i ) -cut of L is defined as a crisp set and it is constructed in the following form
L ( α i , β i ) = ς U : μ L i ( ς ) α i , υ L i ( ς ) β i , i = 1 , 2 , , m ,
where α i , β i [ 0 , 1 ] , 0 α i q + β i q 1 and q 1 .
Theorem 1. 
For any three m- PqROPFs D , S and J .
1. 
D S = S D ;
2. 
( D S ) J = D ( S J ) ;
3. 
D ( S J ) = ( D S ) ( D J ) ;
4. 
D ( S J ) = ( D S ) ( D J ) ;
5. 
D ( S J ) ( D S ) ( D J ) ;
6. 
D ( S J ) ( D S ) ( D J ) .
Proof. 
Straightforward. □

3. Multi Polar q-Rung Orhopair Fuzzy Graphs

Definition 7. 
An m- PqROPFs ℜ in U × U is considered to be a m-polar q-rung orthopair fuzzy relation in U expressed by
= η ς , ( μ F 1 η ς , μ F 2 η ς , , μ F m η ς ) , ( υ F 1 η ς , υ F 2 η ς , , υ F m η ς ) : η ς U × U
where μ i ( η ς ) : U × U 0 , 1 and υ i ( η ς ) : U × U 0 , 1 represents the membership and non-membership function of , respectively, such that 0 μ i η ς q + υ i η ς q 1 , q 1 and i = 1 , 2 , , m , for all η ς U × U .
Definition 8. 
An multi polar q-rung orthopair fuzzy graph (m- PqROPFG ) of a graph G = ( L , M ) (where L is the set of vertices and M is the set of edges) is defined as an ordered pair G = F , , (where F and ℜ are, respectively, the m- PqROPFs on L and M ), if following conditions are satisfied:
(i) 
μ i η ς min { μ F i η , μ F i ς } ,
(ii) 
υ i η ς max { υ F i η , υ F i ς } ,
for all η , ς L , q 1 and i = 1 , 2 , , m .
Example 2. 
Consider a graph G = ( L , M ) , where L = r , s , t and M = r s , s t , r t . Let F and ℜ be the 3-polar 3-rung orthopair fuzzy vertex set and the 3-polar 3-rung orthopair fuzzy edge set defined on L and M , respectively:
F = ( 0.7 , 0.6 , 0.5 , ( 0.8 , 0.9 , 0.9 ) ) r , ( ( 0.8 , 0.7 , 0.6 ) , ( 0.7 , 0.8 , 0.9 ) ) s , ( 0.9 , 0.8 , 0.7 , ( 0.5 , 0.7 , 0.8 ) ) t ,
= ( ( 0.6 , 0.5 , 0.4 ) , ( 0.7 , 0.7 , 0.8 ) ) r s , ( ( 0.7 , 0.6 , 0.5 ) , ( 0.6 , 0.7 , 0.8 ) ) s t , ( ( 0.6 , 0.4 , 0.3 ) , ( 0.6 , 0.8 , 0.9 ) ) r t .
It is easy to find by direct calculation that G = ( F , ) in Figure 1 is a m- PqROPFG .
Definition 9. 
Let G = F , be multi polar q–rung orthopair fuzzy graph of a graph G = L , M . Then we define the degree and total degree of a vertex η in graph G as
d G ( η ) = ( ( d μ 1 ( η ) , d μ 2 ( η ) , , d μ m ( η ) ) , ( d υ 1 ( η ) , d υ 2 ( η ) , , d υ m ( η ) ) ) a n d , t d G ( η ) = ( ( t d μ 1 ( η ) , t d μ 2 ( η ) , , t d μ m ( η ) ) , ( t d υ 1 ( η ) , t d υ 2 ( η ) , , t d υ m ( η ) ) )
respectively. Where,
d μ i ( η ) = η , ς L , η ς μ i ( η ς ) , d υ i ( η ) = η , ς L , η ς υ i ( η ς ) ,
t d μ i ( η ) = η , ς L , η ς ( μ i ( η ς ) ) + μ F i ( η ) , t d υ i ( η ) = η , ς L , η ς ( υ i ( η ς ) ) + υ F i ( ς ) ,
for i = 1 , 2 , 3 , , m .
Example 3. 
Consider a 3-polar 3-rung orthopair fuzzy graph G = F , given in Figure 1. The degree of vertex r is d G ( r ) = ( ( 1.2 , 0.9 , 0.7 ) , ( 1.3 , 1.6 , 1.8 ) ) and the total degree of vertex r is t d G ( r ) = ( ( 1.9 , 1.5 , 1.2 ) , ( 2.1 , 2.5 , 2.7 ) ) .

4. Some Product Operations of Multi Polar q-Rung Orthopair Fuzzy Graphs

This section deals with some product operations of m- PqROPFGs . We analyze direct, Cartesian, semi strong, strong and lexicographic products of m- PqROPFGs .

4.1. Direct Product of Multi Polar q-Rung Orhopair Fuzzy Graphs

Definition 10. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of the graphs G 1 = ( L 1 , M 1 ) and G 2 = L 2 , M 2 , respectively. Then, the direct product of G 1 and G 2 is expressed as G 1 × G 2 = F 1 × F 2 , 1 × 2 , and defined as:
(i) 
μ F 1 i × μ F 2 i ς 1 , ς 2 = μ F 1 i ς 1 μ F 2 i ς 2 υ F 1 i × υ F 2 i ς 1 , ς 2 = υ F 1 i ς 1 υ F 2 i ς 2 ,
for all ς 1 , ς 2 L 1 × L 2 and i = 1 , 2 , 3 , , m .
(ii) 
μ 1 i × μ 2 i ς 1 , ς 2 η 1 , η 2 = μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) υ 1 i × υ 2 i ς 1 , ς 2 η 1 , η 2 = υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 η 2 ) ,
for all ς 1 η 1 M 1 , ς 2 η 2 M 2 and = 1 , 2 , 3 , , m .
Proposition 1. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of the graphs G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then, G 1 × G 2 represents the direct product of G 1 and G 2 , and it is a m- PqROPFG of G 1 × G 2 .
Definition 11. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . Then, the degree of vertex ς 1 , ς 2 L 1 × L 2 is defined as:
d G 1 × G 2 ς 1 , ς 2 = ( d μ G 1 × G 2 ς 1 , ς 2 , d υ G 1 × G 2 ς 1 , ς 2 ) ,
where,
d μ G 1 × G 2 ς 1 , ς 2 = ( d μ 1 × μ 2 1 ( ς 1 , ς 2 ) , d μ 1 × μ 2 2 ( ς 1 , ς 2 ) , , d μ 1 × μ 2 m ( ς 1 , ς 2 ) ) ,
d υ G 1 × G 2 ς 1 , ς 2 = ( d υ 1 × υ 2 1 ( ς 1 , ς 2 ) , d υ 1 × υ 2 2 ( ς 1 , ς 2 ) , , d υ 1 × υ 2 m ( ς 1 , ς 2 ) ) ,
and
d μ 1 × μ 2 i ( ς 1 , ς 2 ) = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i × μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) , d υ 1 × υ 2 i ( ς 1 , ς 2 ) = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i × υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 η 1 M 1 , ς 2 η 2 M 2 υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 η 2 ) ,
for i = 1 , 2 , 3 , , m .
Theorem 2. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If μ 2 i μ 1 i , υ 2 i υ 1 i , then d G 1 × G 2 ς 1 , ς 2 = N ( ς 2 ) d G 1 ς 1 and if μ 1 i μ 2 i , υ 1 i υ 2 i , then d G 1 × G 2 ς 1 , ς 2 = N ( ς 1 ) d G 2 ς 2 for all ς 1 , ς 2 L 1 × L 2 . Where the number of vertices adjacent to ς 2 in G 2 is represented by N ( ς 2 ) = ς 2 η 2 M 2 1 , similarly N ( ς 1 ) = ς 1 η 1 M 1 1 shows the number of vertices adjacent to ς 1 in G 1 .
Proof. 
By definition of degree of vertex in G 1 × G 2 , we have
d μ G 1 × G 2 ς 1 , ς 2 = ( d μ 1 × μ 2 1 ( ς 1 , ς 2 ) , d μ 1 × μ 2 2 ( ς 1 , ς 2 ) , , d μ 1 × μ 2 m ( ς 1 , ς 2 ) ) ,
d υ G 1 × G 2 ς 1 , ς 2 = ( d υ 1 × υ 2 1 ( ς 1 , ς 2 ) , d υ 1 × υ 2 2 ( ς 1 , ς 2 ) , , d υ 1 × υ 2 m ( ς 1 , ς 2 ) ) ,
where,
d μ 1 × μ 2 i ( ς 1 , ς 2 ) = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i × μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) , = ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) , ( sin ce μ 2 i μ 1 i ) = ς 2 η 2 M 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) , = N ( ς 2 ) d i μ 1 ( ς 1 ) ,
d υ 1 × υ 2 i ( ς 1 , ς 2 ) = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i × υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 η 1 M 1 , ς 2 η 2 M 2 υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 η 2 ) , = ς 1 η 1 M 1 , ς 2 η 2 M 2 υ 1 i ( ς 1 η 1 ) , = ς 2 η 2 M 2 1 · ς 1 η 1 M 1 υ 1 i ( ς 1 η 1 ) , ( sin ce υ 2 i υ 1 i ) = N ( ς 2 ) d i υ 1 ( ς 1 ) ,
for i = 1 , 2 , 3 , , m . Hence, d G 1 × G 2 ς 1 , ς 2 = N ( ς 2 ) d G 1 ( ς 1 ) . In similar manner we can show that if μ 1 i μ 2 i , υ 1 i υ 2 i , then d G 1 × G 2 ς 1 , ς 2 = N ( ς 1 ) d G 1 ( ς 2 ) .
Definition 12. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . Then, for vertex ς 1 , ς 2 L 1 × L 2 the total degree is defined as:
t d G 1 × G 2 ς 1 , ς 2 = ( t d μ G 1 × G 2 ς 1 , ς 2 , t d υ G 1 × G 2 ς 1 , ς 2 ) ,
where,
t d μ G 1 × G 2 ς 1 , ς 2 = ( t d μ 1 × μ 2 1 ( ς 1 , ς 2 ) , t d μ 1 × μ 2 2 ( ς 1 , ς 2 ) , , t d μ 1 × μ 2 m ( ς 1 , ς 2 ) ) ,
t d υ G 1 × G 2 ς 1 , ς 2 = ( t d υ 1 × υ 2 1 ( ς 1 , ς 2 ) , t d υ 1 × υ 2 2 ( ς 1 , ς 2 ) , , t d υ 1 × υ 2 m ( ς 1 , ς 2 ) ) ,
and,
t d μ 1 × μ 2 i ( ς 1 , ς 2 ) = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 ( μ 1 i × μ 2 i ) ( ς 1 , ς 2 η 1 , η 2 ) + ( μ F 1 i × μ F 2 i ) ς 1 , ς 2 , = ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , t d υ 1 × υ 2 i ( ς 1 , ς 2 ) = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i × υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) + ( υ F 1 i × υ F 2 i ) ς 1 , ς 2 , = ς 1 η 1 M 1 , ς 2 η 2 M 2 υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 η 2 ) + υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ,
for i = 1 , 2 , 3 , , m .
Theorem 3. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If
1. 
μ 2 i μ 1 i , then t d μ G 1 × G 2 ς 1 , ς 2 = N ( ς 2 ) d μ G 1 ( ς 1 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ;
2. 
υ 2 i υ 1 i , then t d υ G 1 × G 2 ς 1 , ς 2 = N ( ς 2 ) d υ G 1 ( ς 1 ) + υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ;
3. 
μ 1 i μ 2 i , then t d μ G 1 × G 2 ς 1 , ς 2 = N ( ς 1 ) d μ G 2 ( ς 2 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ;
4. 
υ 1 i υ 1 i , then t d υ G 1 × G 2 ς 1 , ς 2 = N ( ς 1 ) d υ G 2 ( ς 2 ) + υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ;
for all ς 1 , ς 2 L 1 × L 2 and i = 1 , 2 , 3 , , m , where d μ G 1 ς 1 = ( d μ 1 1 ( ς 1 ) , d μ 1 2 ( ς 1 ) , , d μ 1 m ( ς 1 ) ) and d υ G 1 ς 1 = ( d υ 1 1 ( ς 1 ) , d υ 1 2 ( ς 1 ) , . . . , d υ 1 m ( ς 1 ) ) .
Proof. 
By using Definition 12 and Theorem 2 the proof is straightforward. □
Example 4. 
Consider two 3-polar 3-rung orthopair fuzzy graphs G 1 = F 1 , 1 and G 2 = F 2 , 2 on vertex sets L 1 = { f , g , h } and L 2 = { j , k , l } , respectively, as represented in Figure 2, Table 1 and Table 2. Then, the direct product G 1 × G 2 is given in Figure 3, Table 3 and Table 4.
Since μ 2 i μ 1 i , υ 2 i υ 1 i , so by Theorem 2, we have
d μ G 1 × G 2 f , j = N ( j ) d μ G 1 ( f ) = ( 2.4 , 2 , 1.6 ) ,
d υ G 1 × G 2 f , j = N ( j ) d υ G 1 ( f ) = ( 2.8 , 2.8 , 3.2 ) .
Therefore, d G 1 × G 2 f , j   = ( ( 2.4 , 2 , 1.6 ) , ( 2.8 , 2.8 , 3.2 ) ) .
In addition, by Theorem 3, we have
t d μ G 1 × G 2 f , j = N ( j ) d μ G 1 ( f ) + μ F 1 i ( f ) μ F 2 i ( j ) = ( 3.1 , 2.6 , 2.1 ) ,
t d υ G 1 × G 2 f , j = N ( j ) d υ G 1 ( f ) + υ F 1 i ( f ) υ F 2 i ( j ) = ( 3.5 , 3.6 , 4 ) .
Therefore, t d G 1 × G 2 ( f , j ) = ( ( 3.1 , 2.6 , 2.1 ) , ( 3.5 , 3.6 , 4 ) ) .
Similarly, for all the vertices in G 1 × G 2 we can find the degree and total degree.

4.2. Cartesian Product of Multi Polar q-Rung Orhopair Fuzzy Graphs

Definition 13. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then, for G 1 and G 2 , G 1 G 2 = ( F 1 F 2 , 1 2 ) represents the Cartesian product and it is defined as:
(i) 
( μ F 1 i μ F 2 i ) ( ς 1 , ς 2 ) = μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ( υ F 1 i υ F 2 i ) ( ς 1 , ς 2 ) = υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ,
for all ( ς 1 , ς 2 ) L 1 × L 2 and i = 1 , 2 , 3 , , m .
(ii) 
( μ 1 i μ 2 i ) ( ( ς , ς 2 ) ( ς , η 2 ) ) = μ F 1 i ( ς ) μ 2 i ( ς 2 η 2 ) ( υ 1 i υ 2 i ) ( ( ς , ς 2 ) ( ς , η 2 ) ) = υ F 1 i ( ς ) υ 2 i ( ς 2 η 2 ) ,
for all ς L 1 , ς 2 η 2 M 2 , and i = 1 , 2 , 3 , , m .
(iii) 
( μ 1 i μ 2 i ) ( ( ς 1 , z ) ( η 1 , z ) ) = μ 1 i ( ς 1 η 1 ) μ F 2 i ( z ) ( υ 1 i υ 2 i ) ( ( ς 1 , z ) ( η 1 , z ) ) = υ 1 i ( ς 1 η 1 ) υ F 2 i ( z ) ,
for all z L 2 , ς 1 η 1 M 1 and i = 1 , 2 , 3 , , m .
Proposition 2. 
Let G 1 = F 1 , 1 and G 2 = F 1 , 1 be the m- PqROPFG s of the graphs G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then, G 1 G 2 the Cartesian product is a m- PqROPFG .
Definition 14. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . Then, the degree of vertex ( ς 1 , ς 2 ) L 1 ×   L 2 is defined as:
d μ G 1 G 2 ς 1 , ς 2 = ( d μ 1 μ 2 1 ( ς 1 , ς 2 ) , d μ 1 μ 2 2 ( ς 1 , ς 2 ) , , d μ 1 μ 2 m ( ς 1 , ς 2 ) ) ,
d υ G 1 G 2 ς 1 , ς 2 = ( d υ 1 υ 2 1 ( ς 1 , ς 2 ) , d υ 1 υ 2 2 ( ς 1 , ς 2 ) , , d υ 1 υ 2 m ( ς 1 , ς 2 ) ) ,
where,
d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 ( μ 1 i μ 2 i ) ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) , d i υ 1 υ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 ( υ 1 i υ 2 i ) ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) ,
for i = 1 , 2 , 3 , , m .
Theorem 4. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If μ F 1 i μ 2 i , υ F 1 i υ 2 i and μ F 2 i μ 1 i , υ F 2 i υ 1 i , then, d G 1 G 2 ( ς 1 , ς 2 ) = d G 1 ( ς 1 ) + d G 2 ( ς 2 ) for all ( ς 1 , ς 2 ) L 1 × L 2 and i = 1 , 2 , 3 , , m .
Proof. 
By definition of vertex degree of G 1 G 2 , we have
d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 ( μ 1 i μ 2 i ) ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) , ( by using μ F 1 i μ 2 i a n d μ F 2 i μ 1 i ) = d i μ 2 ς 2 + d i μ 1 ς 1 ,
d i υ 1 υ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 1 · ς 1 η 1 M 1 υ 1 i ( ς 1 η 1 ) , ( by using υ F 1 i υ 2 i a n d υ F 1 i υ 1 i ) = d i υ 2 ς 2 + d i υ 1 ς 1 ,
for i = 1 , 2 , 3 , , m . Hence d G 1 G 2 ( ς 1 , ς 2 ) = d G 1 ( ς 1 ) + d G 2 ( ς 2 ) .
Definition 15. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . Then, for any vertex ( ς 1 , ς 2 ) L 1 × L 2 , the total degree is defined as:
t d G 1 G 2 ς 1 , ς 2 = ( t d μ G 1 G 2 ς 1 , ς 2 , t d υ G 1 G 2 ς 1 , ς 2 ) ,
where,
t d μ G 1 G 2 ς 1 , ς 2 = ( t d μ 1 μ 2 1 ( ς 1 , ς 2 ) , t d μ 1 μ 2 2 ( ς 1 , ς 2 ) , , t d μ 1 μ 2 m ( ς 1 , ς 2 ) ) ,
t d υ G 1 G 2 ς 1 , ς 2 = ( t d υ 1 υ 2 1 ( ς 1 , ς 2 ) , t d υ 1 υ 2 2 ( ς 1 , ς 2 ) , , t d υ 1 υ 2 m ( ς 1 , ς 2 ) ) ,
and,
t d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 ( μ 1 i μ 2 i ) ( ς 1 , ς 2 η 1 , η 2 ) + ( μ F 1 i μ F 2 i ) ( ς 1 , ς 2 , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , t d i υ 1 υ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 ( υ 1 i υ 2 i ) ( ς 1 , ς 2 η 1 , η 2 ) + ( υ F 1 i υ F 2 i ) ( ς 1 , ς 2 , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) + υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) .
for i = 1 , 2 , 3 , , m .
Theorem 5. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If
(i) 
μ F 1 i μ 2 i and μ F 2 i μ 1 i , then
t d μ G 1 G 2 ς 1 , ς 2 = t d μ G 1 ς 1 + t d μ G 2 ς 2 μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ;
(ii) 
υ F 1 i υ 2 i and υ F 2 i υ 1 i , then
t d υ G 1 G 2 ς 1 , ς 2 = t d υ G 1 ς 1 + t d υ G 2 ( ς 2 ) ; for all ( ς 1 , ς 2 ) L 1 × L 2 and for i = 1 , 2 , 3 , , m .
Proof. 
By definition of vertex total degree of G 1 G 2 ,
(i)
If μ F 1 i μ 2 i , μ F 2 i μ 1 i
t d i μ 1 μ 2 ς 1 , ς 2 = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) + μ F 2 i ( ς 2 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) + ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + μ F 2 i ( ς 2 ) , = t d i μ 1 ς 1 + t d i μ 2 ς 2 μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) .
(ii)
If υ F 1 i υ 2 i , υ F 2 i υ 1 i
t d i υ 1 υ 2 ς 1 , ς 2 = ς 1 = η 1 L 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) + υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 1 · ς 1 η 1 M 1 υ 1 i ( ς 1 η 1 ) + υ F 1 i ( ς 1 ) + υ F 2 i ( ς 2 ) υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) , = t d i υ 1 ς 1 + t d i υ 2 ς 2 υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ,
for i = 1 , 2 , 3 , , m .
Example 5. 
Consider two 3-polar 3-rung orthopair fuzzy graphs G 1 = F 1 , 1 and G 2 = F 2 , 2 on vertex sets L 1 = { r , s , t } and L 2 = { v , w } , respectively, given in Figure 4, Table 5 and Table 6, where μ F 1 i μ 2 i , υ F 1 i υ 2 i and μ F 2 i μ 1 i , υ F 2 i υ 1 i . Then, their Cartesian product G 1 G 2 is presented in Figure 5, Table 7 and Table 8.
with the help of Theorem 4, we obtain
d μ G 1 G 2 r , v = d μ G 1 r + d μ G 2 v = ( 2.1 , 1.8 , 1.6 ) ,
d υ G 1 G 2 r , v = d υ G 1 r + d υ G 2 v = ( 2.1 , 2.1 , 2.4 ) .
Therefore, d G 1 G 2 r , v = ( ( 2.1 , 1.8 , 1.6 ) , ( 2.1 , 2.1 , 2.4 ) ) .
In addition, by Theorem 5, we have
t d μ G 1 G 2 r , v = t d μ G 1 r + t d μ G 2 v μ F 1 i ( r ) μ F 2 i ( v ) = ( 2.9 , 2.5 , 2.2 ) ,
t d υ G 1 G 2 r , v = t d υ G 1 r + t d υ G 2 v υ F 1 i ( r ) υ F 2 i ( v ) = ( 2.8 , 2.8 , 3.2 ) .
Therefore, t d G 1 G 2 r , v = ( ( 2.9 , 2.5 , 2.2 ) , ( 2.8 , 2.8 , 3.2 ) ) .
Similarly, for all the vertices in G 1 G 2 the degree and total degree can be found.

4.3. Semi Strong Product of Multi Polar q-Rung Orhopair Fuzzy Graphs

Definition 16. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of the graph G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then, G 1 · G 2 = ( F 1 · F 2 , 1 · 2 ) denoted the semi-strong product of G 1 and G 2 and defined as:
(i) 
( μ F 1 i · μ F 2 i ) ( ς 1 , ς 2 ) = μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ( υ F 1 i · υ F 2 i ) ( ς 1 , ς 2 ) = υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ,
for all ( ς 1 , ς 2 ) L 1 × L 2 and i = 1 , 2 , 3 , , m .
(ii) 
( μ 1 i · μ 2 i ) ( ( ς , ς 2 ) ( ς , η 2 ) ) = μ F 1 i ( ς ) μ 2 i ( ς 2 η 2 ) ( υ 1 i · υ 2 i ) ( ( ς , ς 2 ) ( ς , η 2 ) ) = υ F 1 i ( ς ) υ 2 i ( ς 2 η 2 ) ,
for all ς L 1 , ς 2 η 2 M 2 and i = 1 , 2 , 3 , , m .
(iii) 
( μ 1 i · μ 2 i ) ( ( ς 1 , ς 2 ) ( η 1 , η 2 ) ) = μ F 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) ( υ 1 i · υ 2 i ) ( ( ς 1 , ς 2 ) ( η 1 , η 2 ) ) = υ F 1 i ( ς 1 η 1 ) υ F 2 i ( ς 2 η 2 ) ,
for all ς 1 η 1 M 1 , ς 2 η 2 M 2 and i = 1 , 2 , 3 , , m .
Proposition 3. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of the graph G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then, G 1 · G 2 is the semi-strong product of G 1 and G 2 and it is a m- PqROPFG .
Definition 17. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . Then, the degree of vertex ( ς 1 , ς 2 ) L 1 × L 2 is defined as:
d μ G 1 · G 2 ς 1 , ς 2 = ( d μ 1 · μ 2 1 ( ς 1 , ς 2 ) , d μ 1 · μ 2 2 ( ς 1 , ς 2 ) , , d μ 1 · μ 2 m ( ς 1 , ς 2 ) ) ,
d υ G 1 · G 2 ς 1 , ς 2 = ( d υ 1 υ 2 1 ( ς 1 , ς 2 ) , d υ 1 υ 2 2 ( ς 1 , ς 2 ) , , d υ 1 υ 2 m ( ς 1 , ς 2 ) ) ,
where,
d i μ 1 · μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i · μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) , d i υ 1 υ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i · υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 η 2 ) .
for i = 1 , 2 , 3 , , m .
Theorem 6. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If μ F 1 i μ 2 i , υ F 1 i υ 2 i , μ 1 i μ 2 i , υ 1 i υ 2 i , then, d G 1 · G 2 ( ς 1 , ς 2 ) = N ( ς 2 ) d G 1 ( ς 1 ) + d G 2 ( ς 2 ) , for all ( ς 1 , ς 2 ) L 1 × L 2 and i = 1 , 2 , 3 , , m .
Proof. 
By definition of vertex degree of G 1 · G 2 , we have
d i μ 1 · μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i · μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + ς 2 η 2 M 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) , by using μ F 1 i μ 2 i a n d μ 1 i μ 2 i = d i μ 2 ς 2 + N ( ς 2 ) d i μ 1 ( ς 1 ) ,
for i = 1 , 2 , 3 , , m . Analogously, it can be proved that d υ G 1 · G 2 ς 1 , ς 2 = N ( ς 2 ) d υ G 1 ς 1   + d υ G 2 ( ς 2 ) . Hence, d G 1 · G 2 ( ς 1 , ς 2 ) = N ( ς 2 ) d G 1 ( ς 1 ) + d G 2 ( ς 2 ) .
Definition 18. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . Then, for vertex ( ς 1 , ς 2 ) L 1 × L 2 the total degree is determined as:
t d μ G 1 · G 2 ς 1 , ς 2 = ( t d μ 1 · μ 2 1 ( ς 1 , ς 2 ) , t d μ 1 · μ 2 2 ( ς 1 , ς 2 ) , , t d μ 1 · μ 2 m ( ς 1 , ς 2 ) ) ,
t d υ G 1 · G 2 ς 1 , ς 2 = ( t d υ 1 · υ 2 1 ( ς 1 , ς 2 ) , t d υ 1 · υ 2 2 ( ς 1 , ς 2 ) , , t d υ 1 · υ 2 m ( ς 1 , ς 2 ) ) ,
where,
t d i μ 1 · μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i · μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) + ( μ F 1 i · μ F 2 i ) ς 1 , ς 2 , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , t d i υ 1 · υ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i · υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) + υ F 1 i · υ F 2 i ς 1 , ς 2 , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 η 2 ) + υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) .
for i = 1 , 2 , 3 , , m .
Theorem 7. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If
(i) 
μ F 1 i μ 2 i and μ 1 i μ 2 i , then, t d μ G 1 · G 2 ς 1 , ς 2 = ( N ( ς 2 ) ) t d μ G 1 ς 1 + t d μ G 2 ς 2 + ( 1 N ( ς 2 ) ) μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ;
(ii) 
υ F 1 i υ 2 i and υ 1 i υ 2 i , then, t d υ G 1 · G 2 ς 1 , ς 2 = ( N ( ς 2 ) ) t d υ G 1 ς 1 + t d υ G 2 ( ς 2 ) + ( 1 N ( ς 2 ) ) υ F 1 i ( ς 1 ) υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ;
for all ( ς 1 , ς 2 ) L 1 × L 2 .
Proof. 
By definition of vertex total degree of G 1 · G 2 ,
(i) μ F 1 i μ 2 i and μ 1 i μ 2 i
t d i μ 1 · μ 2 ς 1 , ς 2 = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + ς 2 η 2 M 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) + μ F 2 i ( ς 2 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = N ( ς 2 ) t d i μ 1 ς 1 + t d i μ 2 ( ς 2 ) + ( 1 N ( ς 2 ) ) μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) .
for i = 1 , 2 , 3 , , m . Analogously, ( i i ) can be proved. □
Example 6. 
Consider G 1 = ( F 1 , 1 ) and G 2 = ( F 2 , 2 ) be two 3-polar 3-rung orthopair fuzzy graphs be visible in Figure 6, Table 9 and Table 10, where μ F 1 i μ 2 i , υ F 1 i υ 2 i and μ 1 i μ 2 i , υ 1 i υ 2 i . Then, their semi-strong product G 1 · G 2 is shown in Figure 7, Table 11 and Table 12.
Thus, by using Table 9, Table 10, Table 11 and Table 12 and Theorem 6, we have
d μ G 1 · G 2 o , a = N ( a ) d μ G 1 o + d μ G 2 a = ( 2.8 , 2.1 , 1.8 ) ,
d υ G 1 · G 2 a , o = N ( o ) d υ G 1 a + d υ G 2 o = ( 2.8 , 2.8 , 3.2 ) .
Therefore, d G 1 · G 2 a , o = ( ( 2.8 , 2.1 , 1.8 ) , ( 2.8 , 2.8 , 3.2 ) ) .
In addition, by Theorem 7, we have t d μ G 1 · G 2 o , a = N ( a ) t d μ G 1 o + t d μ G 2 a + ( 1 N ( a ) ) μ F 1 i ( o ) μ F 1 i ( o ) μ F 2 i ( a ) = ( 3.5 , 2.7 , 2.3 ) ,
t d υ G 1 · G 2 o , a = N ( a ) t d υ G 1 o + t d υ G 2 a + ( 1 N ( a ) ) υ F 1 i ( o ) υ F 1 i ( o ) υ F 2 i ( a ) = ( 3.5 , 3.5 , 4 ) .
Therefore, t d G 1 · G 2 o , a = ( ( 3.5 , 2.7 , 2.3 ) ) , ( 3.5 , 3.5 , 4 ) ) .
Similarly, for all the vertices in G 1 · G 2 we can find their degree and total degree.

4.4. Strong Product of Multi Polar q-Rung Orhopair Fuzzy Graphs

Definition 19. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then G 1 G 2 = ( F 1 F 2 , 1 2 ) represents the strong product of these two m- PqROPFG s and defined as:
(i) 
( μ F 1 i μ F 2 i ) ( ς 1 , ς 2 ) = μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ( υ F 1 i υ F 2 i ) ( ς 1 , ς 2 ) = υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ,
for all ( ς 1 , ς 2 ) L 1 × L 2 and i = 1 , 2 , 3 , , m .
(ii) 
( μ 1 i μ 2 i ) ( ς , ς 2 ) ( ς , η 2 ) ) = μ F 1 i ( ς ) μ 2 i ( ς 2 η 2 ) ( υ 1 i υ 2 i ) ( ( ς , ς 2 ) ( ς , η 2 ) ) = υ F 1 i ( ς ) υ 2 i ( ς 2 η 2 ) ,
for all ς L 1 , ς 2 η 2 M 2 and i = 1 , 2 , 3 , , m .
(iii) 
( μ 1 i μ 2 i ) ( ( ς 1 , z ) ( η 1 , z ) ) = μ 1 i ( ς 1 η 1 ) μ F 2 i ( z ) ( υ 1 i υ 2 i ) ( ( ς 1 , z ) ( η 1 , z ) ) = υ 1 i ( ς 1 η 1 ) υ F 2 i ( z ) ,
for all z L 2 , ς 1 η 1 M 1 and i = 1 , 2 , 3 , , m .
(iv) 
( μ 1 i μ 2 i ) ( ( ς 1 , ς 2 ) ( η 1 , η 2 ) ) = μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 , η 2 ) ( υ 1 i υ 2 i ) ( ( ς 1 , ς 2 ) ( η 1 , η 2 ) ) = υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 , η 2 ) ,
for all ς 1 η 1 M 1 , ς 2 η 2 M 2 and i = 1 , 2 , 3 , , m .
Proposition 4. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then, G 1 G 2 the strong product is a m- PqROPFG .
Definition 20. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . The degree of vertex ( ς 1 , ς 2 ) L 1 × L 2 is defined as:
d μ G 1 G 2 ς 1 , ς 2 = ( d μ 1 μ 2 1 ( ς 1 , ς 2 ) , d μ 1 μ 2 2 ( ς 1 , ς 2 ) , , d μ 1 μ 2 m ( ς 1 , ς 2 ) ) ,
d υ G 1 G 2 ς 1 , ς 2 = ( d υ 1 υ 2 1 ( ς 1 , ς 2 ) , d υ 1 υ 2 2 ( ς 1 , ς 2 ) , , d υ 1 υ 2 m ( ς 1 , ς 2 ) ) ,
where,
d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) , d i υ 1 υ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 η 2 ) .
Theorem 8. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If μ F 1 i μ 2 i , υ F 1 i υ 2 i , μ F 2 i μ 1 i , υ F 2 i υ 1 i , μ 1 i μ 2 i , υ 1 i υ 2 i , then d G 1 G 2 ( ς 1 , ς 2 ) = ( 1 + N ( ς 2 ) ) d G 1 ( ς 1 ) + d G 2 ( ς 2 ) for all ( ς 1 , ς 2 ) L 1 × L 2 , where N ( ς 2 ) is total number of vertices adjscent to ς 2 in G 2 .
Proof. 
By definition of vertex degree of G 1 G 2 , we have
d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 μ 1 i ( ς 2 η 2 ) + ς 2 = η 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + ς 2 η 2 M 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) , Sin ce μ F 1 i μ 2 i , μ F 2 i μ 1 i a n d μ 1 i μ 2 i = ( 1 + N ( ς 2 ) ) d i μ 1 ς 1 + d i μ 2 ς 2 . Analogously , it is easy to show that d i υ 1 υ 2 ς 1 , ς 2 = ( 1 + N ( ς 2 ) ) d i υ 1 ς 1 + d i υ 2 ς 2 , Hence d G 1 G 2 ς 1 , ς 2 = ( 1 + N ( ς 2 ) ) d G 1 ς 1 + d G 2 ς 2 .
Definition 21. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . The total degree of vertex ( ς 1 , ς 2 ) L 1 × L 2 is defined as:
t d μ G 1 G 2 ς 1 , ς 2 = ( t d μ 1 μ 2 1 ( ς 1 , ς 2 ) , t d μ 1 μ 2 2 ( ς 1 , ς 2 ) , , t d μ 1 μ 2 m ( ς 1 , ς 2 ) ) ,
t d υ G 1 G 2 ς 1 , ς 2 = ( t d υ 1 υ 2 1 ( ς 1 , ς 2 ) , t d υ 1 υ 2 2 ( ς 1 , ς 2 ) , , t d υ 1 υ 2 m ( ς 1 , ς 2 ) ) ,
where,
t d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) + μ F 1 i μ F 2 i ς 1 , ς 2 , = ς 1 = η 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , t d i υ 1 υ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) + υ F 1 i υ F 2 i ς 1 , ς 2 , = ς 1 = η 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 , ς 1 η 1 M 1 υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 υ 1 i ( ς 1 η 1 ) υ 2 i ( ς 2 η 2 ) + υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) .
Theorem 9. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If
(i) μ F 1 i μ 2 i and μ F 2 i μ 1 i , μ 1 i μ 2 i , then t d μ G 1 G 2 ς 1 , ς 2 = t d μ G 2 ς 2 + ( 1 + N ( ς 2 ) ) t d μ G 1 ς 1 N ( ς 2 ) μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ;
(ii) υ F 1 i υ 2 i , υ F 2 i υ 1 i , μ 1 i μ 2 i , then t d υ G 1 G 2 ς 1 , ς 2 = t d υ G 2 ( ς 2 ) + ( 1 + N ( ς 2 ) ) t d υ G 1 ς 1 N ( ς 2 ) υ F 1 i ( ς 1 ) υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ;
for all ( ς 1 , ς 2 ) L 1 × L 2 .
Proof. 
For any vertex ( ς 1 , ς 2 ) L 1 × L 2 ,
(i) μ F 1 i μ 2 i , μ F 2 i μ 1 i , μ 1 i μ 2 i
t d i μ 1 μ 2 ς 1 , ς 2 = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + ς 1 η 1 M 1 , ς 2 η 2 M 2 μ 1 i ( ς 1 η 1 ) μ 2 i ( ς 2 η 2 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + ς 2 η 2 M 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) + μ F 2 i ( ς 2 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , sin ce μ F 1 i μ 2 i , μ F 2 i μ 1 i , μ 1 i μ 2 i = ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + μ F 2 i ( ς 2 ) + ( 1 + N ( ς 2 ) ) ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + N ( ς 2 ) μ F 1 i ( ς 1 ) N ( ς 2 ) μ F 1 i ( ς 1 ) + μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + μ F 2 i ( ς 2 ) + ( 1 + N ( ς 2 ) ) ( ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) ) ( N ( ς 2 ) ) μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = t d i μ 2 ς 2 + 1 + N ( ς 2 ) t d i μ 1 ( ς 1 ) N ( ς 2 ) μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) .
Analogously , ( i i ) is easy to prove. □
Example 7. 
Consider G 1 = ( F 1 , 1 ) and G 2 = ( F 2 , 2 ) be two 3-polar 3-rung orthopair fuzzy graphsas in example 34, where μ F 1 i μ 2 i , υ F 1 i υ 2 i , μ F 2 i μ 1 i , υ F 2 i υ 1 i , μ 1 i μ 2 i , υ 1 i υ 2 i and their strong product G 1 G 2 is shown in Figure 8. The vertex set of G 1 G 2 is same as given in Table 11 and edge set of G 1 G 2 is Table 12 with three additional edges given in the Table 13.
Thus, by using Table 9, Table 10, Table 11, Table 12 and Table 13 and Theorem 8, we can find
d μ G 1 G 2 o , a = 1 + N ( a ) d μ G 1 o + d μ G 2 a = ( 3.5 , 2.6 , 2.2 ) ,
d υ G 1 G 2 o , a = 1 + N ( a ) d υ G 1 o + d υ G 2 a = ( 3.5 , 3.5 , 4 ) .
Therefore, d G 1 G 2 l , p = ( ( 3.5 , 2.6 , 2.2 ) ( 3.5 , 3.5 , 4 ) ) .
By using Theorem 9, we can prove t d μ G 1 G 2 o , a = 1 + N ( a ) t d μ G 1 o + t d μ G 2 a N ( a ) μ F 1 i ( o ) μ F 1 i ( o ) μ F 2 i ( a ) = ( 4.2 , 3.2 , 2.7 ) ,
t d υ G 1 G 2 o , a = 1 + N ( a ) t d υ G 1 o + t d υ G 2 a N ( a ) υ F 1 i ( o ) υ F 1 i ( o ) υ F 2 i ( a ) = ( 4.1 , 4.2 , 4.8 ) .
Therefore, t d G 1 G 2 l , p = ( ( 4.2 , 3.2 , 2.7 ) , ( 4.1 , 4.2 , 4.8 ) ) .
Similarly, for all the vertices in G 1 G 2 the degree and total degree can be calculated.

4.5. The Lexicographic Product of Multi Polar q-Rung Orhopair Fuzzy Graphs

Definition 22. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then G 1 G 2 = ( F 1 F 2 , 1 2 ) denotes the lexicographic product of these two m- PqROPFG s and it is defined as follows:
(i) 
( μ F 1 i μ F 2 i ) ( ς 1 , ς 2 ) = μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ( υ F 1 i υ F 2 i ) ( ς 1 , ς 2 ) = υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ,
for all ( ς 1 , ς 2 ) L 1 × L 2 and i = 1 , 2 , 3 , , m .
(ii) 
( μ 1 i μ 2 i ) ( ( ς , ς 2 ) ( ς , η 2 ) ) = μ F 1 i ( ς ) μ 2 i ( ς 2 η 2 ) ( υ 1 i υ 2 i ) ( ( ς , ς 2 ) ( ς , η 2 ) ) = υ F 1 i ( ς ) υ 2 i ( ς 2 η 2 ) ,
for all ς L 1 , ς 2 η 2 M 2 and i = 1 , 2 , 3 , , m .
(iii) 
( μ 1 i μ 2 i ) ( ( ς 1 , z ) ( η 1 , z ) ) = μ 1 i ( ς 1 η 1 ) μ F 2 i ( z ) ( υ 1 i υ 2 i ) ( ( ς 1 , z ) ( η 1 , z ) ) = υ 1 i ( ς 1 η 1 ) υ F 2 i ( z ) ,
for all z L 2 , ς 1 η 1 M 1 and i = 1 , 2 , 3 , , m .
(iv) 
( μ 1 i μ 2 i ) ( ( ς 1 , ς 2 ) ( η 1 , η 2 ) ) = μ F 2 i ( ς 2 ) μ F 2 i ( η 2 ) μ 1 i ( ς 1 , η 1 ) ( υ 1 i υ 2 i ) ( ( ς 1 , ς 2 ) ( η 1 , η 2 ) ) = υ F 2 i ( ς 2 ) υ F 2 i ( η 2 ) υ 1 i ( ς 1 , η 1 ) ,
for all ς 1 η 1 M 1 , ς 2 η 2 L 2 and i = 1 , 2 , 3 , , m .
Proposition 5. 
For two m- PqROPFG s , G 1 = F 1 , 1 and G 2 = F 2 , 2 the lexicographic product G 1 G 2 is a m- PqROPFG .
Definition 23. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . The degree of any vertex ( ς 1 , ς 2 ) L 1 × L 2 is defined as:
d μ G 1 G 2 ς 1 , ς 2 = ( d μ 1 μ 2 1 ( ς 1 , ς 2 ) , d μ 1 μ 2 2 ( ς 1 , ς 2 ) , , d μ 1 μ 2 m ( ς 1 , ς 2 ) ) ,
d υ G 1 G 2 ς 1 , ς 2 = ( d υ 1 [ υ 2 ] 1 ( ς 1 , ς 2 ) , d υ 1 [ υ 2 ] 2 ( ς 1 , ς 2 ) , , d υ 1 [ υ 2 ] m ( ς 1 , ς 2 ) ) ,
where,
d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + ς 2 η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( η 2 ) μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) , d i υ 1 [ υ 2 ] ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 ( υ 1 i υ 2 i ) ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ 2 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) + ς 2 η 2 L 2 , ς 1 η 1 M 1 υ F 2 i ( η 2 ) υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) .
for i = 1 , 2 , 3 , , m .
Theorem 10. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If μ F 1 i μ 2 i , υ F 1 i υ 2 i and μ F 2 i μ 1 i , υ F 2 i υ 1 i , then d G 1 G 2 ( ς 1 , ς 2 ) = L 2 d G 1 ( ς 1 ) + d G 2 ( ς 2 ) for all ( ς 1 , ς 2 ) L 1 × L 2 , where L 2 represents the number of total vertices in G 2 .
Proof. 
For any vertex ( ς 1 , ς 2 ) L 1 × L 2 ,
d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + ς 2 η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( η 2 ) μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + ς 2 η 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) , = ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + ( ς 2 = η 2 1 + ς 2 η 2 1 ) ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) , ( sin ce μ F 1 i μ 2 i a n d μ F 2 i μ 1 i ) = ( d i ) μ 2 ( ς 2 ) + L 2 ( d i ) μ 1 ( ς 1 ) , analogously , we can show that ( d υ ) G 1 G 2 ( ς 1 , ς 2 ) = L 2 ( d i ) υ 1 ( ς 1 ) + ( d i ) υ 2 ( ς 2 ) , hence , d G 1 G 2 ( ς 1 , ς 2 ) = L 2 d G 1 ( ς 1 ) + d G 2 ( ς 2 ) .
Definition 24. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPF gs . The degree of any vertex ( ς 1 , ς 2 ) L 1 × L 2 is defined as:
t d μ G 1 G 2 ς 1 , ς 2 = ( t d μ 1 μ 2 1 ( ς 1 , ς 2 ) , t d μ 1 μ 2 2 ( ς 1 , ς 2 ) , , t d μ 1 μ 2 m ( ς 1 , ς 2 ) ) ,
t d υ G 1 G 2 ς 1 , ς 2 = ( t d υ 1 [ υ 2 ] 1 ( ς 1 , ς 2 ) , t d υ 1 [ υ 2 ] 2 ( ς 1 , ς 2 ) , , t d υ 1 [ υ 2 ] m ( ς 1 , ς 2 ) ) ,
where,
t d i μ 1 μ 2 ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 μ 1 i μ 2 i ( ς 1 , ς 2 η 1 , η 2 ) + ( μ F 1 i μ F 2 i ) ς 1 , ς 2 , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + ς 2 η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( η 2 ) μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , t d i υ 1 [ υ 2 ] ς 1 , ς 2 = ς 1 , ς 2 , η 1 , η 2 L 1 × L 2 ς 1 , ς 2 η 1 , η 2 υ 1 i υ 2 i ( ς 1 , ς 2 η 1 , η 2 ) + ( υ F 1 i υ F 2 i ) ς 1 , ς 2 , = ς 1 = η 1 L 1 , ς 2 η 2 M 2 υ F 1 i ( ς 1 ) υ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 υ F 2 i ( ς 2 ) υ 1 i ( ς 1 η 1 ) + ς 2 η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( η 2 ) μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η ) + υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) .
Theorem 11. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . If
(i) μ F 1 i μ 2 i , μ F 2 i μ 1 i , then
t d μ G 1 G 2 ς 1 , ς 2 = t d μ G 2 ς 2 + L 2 t d μ G 1 ς 1 ( L 2 1 ) μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) ;
(ii) υ F 1 i υ 2 i , υ F 2 i υ 1 i , then
t d υ G 1 G 2 ς 1 , ς 2 = t d υ G 2 ( ς 2 ) + L 2 t d υ G 1 ς 1 ( L 2 1 ) υ F 1 i ( ς 1 ) υ F 1 i ( ς 1 ) υ F 2 i ( ς 2 ) ;
for all ( ς 1 , ς 2 ) L 1 × L 2 and i = 1 , 2 , 3 , , m .
Proof. 
For any vertex ( ς 1 , ς 2 ) L 1 × L 2 ,
(i) μ F 1 i μ 2 i , μ F 2 i μ 1 i
t d i μ 1 μ 2 ς 1 , ς 2 = ς 1 = η 1 L 1 , ς 2 η 2 M 2 μ F 1 i ( ς 1 ) μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + ς 2 η 2 L 2 , ς 1 η 1 M 1 μ F 2 i ( η 2 ) μ F 2 i ( ς 2 ) μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = ς 1 = η 1 1 · ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + ς 2 = η 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + ς 2 η 2 1 · ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + μ F 1 i ( ς 1 ) + μ F 2 i ( ς 2 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = ς 2 η 2 M 2 μ 2 i ( ς 2 η 2 ) + μ F 2 i ( ς 2 ) + ( ς 2 = η 2 1 + ς 2 η 2 1 ) ς 1 η 1 M 1 μ 1 i ( ς 1 η 1 ) + L 2 μ F 1 i ( ς 1 ) L 2 μ F 1 i ( ς 1 ) + μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) , = t d i μ 2 ς 2 + L 2 t d i μ 1 ς 1 ( L 2 1 ) μ F 1 i ( ς 1 ) μ F 1 i ( ς 1 ) μ F 2 i ( ς 2 ) .
Analogously, ( i i ) can be proved. □
Example 8. 
Consider G 1 = F 1 , 1 and G 2 = F 2 , 2 be two 3-polar 3-rung orthopair fuzzy graphs shown in Figure 9, Table 14 and Table 15, where μ F 1 i μ 2 i , υ F 1 i υ 2 i and μ F 2 i μ 1 i , υ F 2 i υ 1 i and their lexicographic product is shown in Figure 10 and Table 16.
Now we find degree of vertex ( n , o ) . We have
( μ F 1 i μ F 2 i ) ( n , o ) = ( 0.9 , 0.8 , 0.7 ) and
( υ F 1 i υ F 2 i ) ( n , o ) = ( 0.6 , 0.7 , 0.8 ) . We have total 33 number of edges in edge set of G 1 G 2 but here we take only those edges which are adjacent with vertex ( n , o ) in Table 16.
Thus with the help of Theorem 10 and using Table 14, Table 15 and Table 16, we obtain
d μ G 1 G 2 n , o = L 2 d μ G 1 n + d μ G 2 o = ( 5.2 , 4.3 , 3.4 ) ,
d υ G 1 G 2 n , o = L 2 d υ G 1 n + d υ G 2 o = ( 4.8 , 5.6 , 6.4 ) .
Therefore, d G 1 G 2 n , o = ( ( 5.2 , 4.3 , 3.4 ) , ( 4.8 , 5.6 , 6.4 ) ) . In addition, we must have the following results by using Theorem 11,
t d μ G 1 G 2 n , o = L 2 t d μ G 1 n + t d μ G 2 o ( L 2 1 ) μ F 1 i ( n ) μ F 1 i ( n ) μ F 2 i ( o ) = ( 6.1 , 5.1 , 4.1 ) , t d υ G 1 G 2 n , o = L 2 t d υ G 1 n + t d υ G 2 o ( L 2 1 ) υ F 1 i ( n ) υ F 1 i ( n ) υ F 2 i ( o ) = ( 5.4 , 6.3 , 7.2 ) .
Therefore, t d G 1 G 2 n , o = ( ( 6.1 , 5.1 , 4.1 ) , ( 5.4 , 6.3 , 7.2 ) ) .
In similar way, for all the vertices in G 1 G 2 the degree and total degree of these vertices can be calculated.

5. Union of Multi Polar q-Rung Orthopair Fuzzy Graphs

Definition 25. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s of the graphs G 1 = L 1 , M 1 and G 2 = L 2 , M 2 , respectively. Then, the union G 1 G 2 = F 1 F 2 , 1 2 is defined as follows:
(i) 
( μ F 1 i μ F 2 i ) ( ς ) = μ F 1 i ( ς ) i f ς L 1 L 2 μ F 2 i ( ς ) i f ς L 2 L 1 μ F 1 i ( ς ) μ F 2 i ( ς ) i f ς L 1 L 2 ,
(ii) 
( υ F 1 i ( υ F 2 i ) ( ς ) = ( υ F 1 i ( ς ) i f ς L 1 L 2 ( υ F 2 i ( ς ) i f ς L 2 L 1 ( υ F 1 i ( ς ) ( υ F 2 i ( ς ) i f ς L 1 L 2 ,
(iii) 
( μ 1 i μ 2 i ) ( ς η ) = μ 1 i ( ς η ) i f ς η M 1 M 2 μ 2 i ( ς η ) i f ς η M 2 M 1 μ 1 i ( ς η ) μ 2 i ( ς η ) i f ς η M 1 M 2 ,
(iv) 
( υ 1 i υ 2 i ) ( ς η ) = υ 1 i ( ς η ) i f ς η M 1 M 2 υ 2 i ( ς η ) i f ς η M 2 M 1 υ 1 i ( ς η ) υ 2 i ( ς η ) i f ς η M 1 M 2 ,
for i = 1 , 2 , 3 , , m .
Theorem 12. 
If G 1 and G 2 are m- PqROPFG s of G 1 and G 2 , respectively, Then the union G 1 G 2 is a m- PqROPFG of G 1 G 2 , where F 1 , F 2 , 1 and 2 are the m- PqROPFS s of L 1 , L 2 , M 1 and M 2 , respectively, and L 1 L 2 = ϕ .
Definition 26. 
Let G 1 = F 1 , 1 and G 2 = F 2 , 2 be two m- PqROPFG s . For any vertex ς L 1 L 2 and i = 1 , 2 , 3 , , m , the degree of vertex ς L 1 L 2 , is defined as
d μ G 1 G 2 ς 1 , ς 2 = ( d μ 1 μ 2 1 ( ς 1 , ς 2 ) , d μ 1 μ 2 2 ( ς 1 , ς 2 ) , , d μ 1 μ 2 m ( ς 1 , ς 2 ) ) ,
d υ G 1 G 2 ς 1 , ς 2 = ( d υ 1 υ 2 1 ( ς 1 , ς 2 ) , d υ 1 υ 2 2 ( ς 1 , ς 2 ) , , d υ 1 υ 2 m ( ς 1 , ς 2 ) ) ,
and total degree is defined as
t d μ G 1 G 2 ς 1 , ς 2 = ( t d μ 1 μ 2 1 ( ς 1 , ς 2 ) , t d μ 1 μ 2 2 ( ς 1 , ς 2 ) , , t d μ 1 μ 2 m ( ς 1 , ς 2 ) ) ,
t d υ G 1 G 2 ς 1 , ς 2 = ( t d υ 1 υ 2 1 ( ς 1 , ς 2 ) , t d υ 1 υ 2 2 ( ς 1 , ς 2 ) , , t d υ 1 υ 2 m ( ς 1 , ς 2 ) ) ,
Here, we consider three cases.
Case 1. 
Either ς L 1 L 2 or ς L 2 L 1 . Then, no edge incident at ς lies in M 1 M 2 . Thus, for ς L 1 L 2 and i = 1 , 2 , 3 , , m .
( d μ i ) G 1 G 2 ( ς ) = ς η M 1 μ 1 i ( ς η ) = ( d μ i ) G 1 ( ς ) , ( d υ i ) G 1 G 2 ( ς ) = ς η M 2 υ 1 i ( ς η ) = ( d υ i ) G 1 ( ς ) , ( t d μ i ) G 1 G 2 ( ς ) = ( t d μ i ) G 1 ( ς ) , ( t d υ i ) G 1 G 2 ( ς ) = ( t d υ i ) G 1 ( ς ) .
For ς L 2 L 1 and i = 1 , 2 , 3 , , m .
( d μ i ) G 1 G 2 ( ς ) = ς η M 2 μ 2 i ( ς η ) = ( d μ i ) G 2 ( ς ) , ( d υ i ) G 1 G 2 ( ς ) = ς η M 2 υ 2 i ( ς η ) = ( d υ i ) G 2 ( ς ) , ( t d μ i ) G 1 G 2 ( ς ) = ( t d μ i ) G 2 ( ς ) , ( t d υ i ) G 1 G 2 ( ς ) = ( t d υ i ) G 2 ( ς ) .
Case 2. 
If ς L 1 L 2 but no edge insident at ς lies in M 1 M 2 . Then, any edge incident at ς is either in M 1 M 2 or in M 2 M 1 . For i = 1 , 2 , 3 , , m we have,
( d μ i ) G 1 G 2 ( ς ) = ς η M 1 M 2 ( μ 1 i μ 2 i ) ( ς η ) , = ς η M 1 μ 1 i ( ς η ) + ς η M 2 μ 2 i ( ς η ) , = ( d μ i ) G 1 ( ς ) + ( d μ i ) G 2 ( ς ) .
Similarly, ( d υ i ) G 1 G 2 ( ς ) = ( d υ i ) G 1 ( ς ) + ( d υ i ) G 2 ( ς ) ,
( t d μ i ) G 1 G 2 ( ς ) = ς η M 1 M 2 ( μ 1 i μ 2 i ) ( ς η ) + μ F 1 i ( ς ) μ F 2 i ( ς ) , = ( d μ i ) G 1 ( ς ) + ( d μ i ) G 2 ( ς ) + μ F 1 i ( ς ) μ F 2 i ( ς ) , = ( t d μ i ) G 1 ( ς ) + ( t d μ i ) G 2 ( ς ) μ F 1 i ( ς ) μ F 2 i ( ς ) .
Similarly, ( d υ i ) G 1 G 2 ( ς ) = ( t d υ i ) G 1 ( ς ) + ( t d υ i ) G 2 ( ς ) υ F 1 i ( ς ) υ F 2 i ( ς ) .
Case 3. 
If ς L 1 L 2 and some edges incident at ς are in M 1 M 2 . Then, for i = 1 , 2 , 3 , , m ,
( d μ i ) G 1 G 2 ( ς ) = ς η M 1 M 2 ( μ 1 i μ 2 i ) ( ς η ) ς η M 1 M 2 μ 1 i ( ς η ) + ς η M 2 M 1 μ 2 i ( ς η ) + ς η M 1 M 2 μ 1 i ( ς η ) μ 2 i ( ς η ) , = ς η M 1 M 2 μ 1 i ( ς η ) + ς η M 2 M 1 μ 2 i ( ς η ) + ς η M 1 M 2 μ 1 i ( ς η ) μ 2 i ( ς η ) + ς η M 1 M 2 μ 1 i ( ς η ) μ 2 i ( ς η ) ς η M 1 M 2 μ 1 i ( ς η ) μ 2 i ( ς η ) , = ς η M 1 M 2 μ 1 i ( ς η ) + ς η M 2 M 1 μ 2 i ( ς η ) + ς η M 1 M 2 μ 1 i ( ς η ) + ς η M 1 M 2 μ 2 i ( ς η ) ς η M 1 M 2 μ 1 i ( ς η ) μ 2 i ( ς η ) , = ς η M 1 μ 1 i ( ς η ) + ς η M 2 μ 2 i ( ς η ) ς η M 1 M 2 μ 1 i ( ς η ) μ 2 i ( ς η ) = ( d μ i ) G 1 ( ς ) + ( d μ i ) G 2 ( ς ) ς η M 1 M 2 μ 1 i ( ς η ) μ 2 i ( ς η ) .
Similarly, ( d υ i ) G 1 G 2 ( ς ) = ( d υ i ) G 1 ( ς ) + ( d υ i ) G 2 ( ς ) ς η M 1 M 2 υ 1 i ( ς η ) υ 2 i ( ς η ).
In addition,
( t d μ i ) G 1 G 2 ( ς ) = ( t d μ i ) G 1 ( ς ) + ( t d μ i ) G 2 ( ς ) ς η M 1 M 2 μ 1 i ( ς η ) μ 2 i ( ς η ) μ F 1 i ( ς ) μ F 2 i ( ς ) ,
( t d υ i ) G 1 G 2 ( ς ) = ( t d υ i ) G 1 ( ς ) + ( t d υ i ) G 2 ( ς ) ς η M 1 M 2 υ 1 i ( ς η ) υ 2 i ( ς η ) μ F 1 i ( ς ) μ F 2 i ( ς ) .
Example 9. 
Consider G 1 = P 1 , Q 1 and G 2 = P 2 , Q 2 be two 3-polar 3-rung orthopair fuzzy graphs on vertex sets L 1 = e , f , g , h and L 2 = e , f , h , respectively, as shown in Figure 11, Table 17 and Table 18. In addition, their union G 1 G 2 is shown in Figure 12, Table 19 and Table 20, since f L 1 L 2 .
Since g L 1 L 2 , thus,
( d μ ) G 1 G 2 ( g ) = ( d μ ) G 1 ( g ) = ( 1.3 , 1 , 0.7 ) , ( d υ ) G 1 G 2 ( g ) = ( d υ ) G 1 ( g ) = ( 1.2 , 1.4 , 1.5 ) .
Therefore, d G 1 G 2 ( g ) = d G 1 ( g ) = ( ( 1.3 , 1 , 0.7 ) , ( 1.2 , 1.4 , 1.5 ) ) .
( t d μ ) G 1 G 2 ( g ) = ( t d μ ) G 1 ( g ) = ( 2.1 , 1.5 , 1.1 ) , ( t d υ ) G 1 G 2 ( g ) = ( t d υ ) G 1 ( g ) = ( 1.9 , 2.1 , 2.3 ) .
Therefore, t d G 1 G 2 ( g ) = d G 1 ( g ) = ( ( 2.1 , 1.5 , 1.1 ) , ( 1.9 , 2.1 , 2.3 ) ) .
Since h L 1 L 2 but no edge concide with h lies in M 1 M 2 ,
( d μ ) G 1 G 2 ( h ) = ( d μ ) G 1 ( h ) + ( d μ ) G 2 ( h ) = ( 2 , 1.4 , 1.1 ) , ( d υ ) G 1 G 2 ( l ) = ( d υ ) G 1 ( l ) + ( d υ ) G 2 ( l ) = ( 1.8 , 2.1 , 2.4 ) .
Therefore, d G 1 G 2 ( h ) = d G 1 ( h ) + d G 2 ( h ) = ( ( 2 , 1.4 , 1.1 ) , ( 1.8 , 2.1 , 2.4 ) ) .
( t d μ ) G 1 G 2 ( h ) = ( t d μ ) G 1 ( h ) + ( t d μ ) G 2 ( h ) μ F 1 i ( h ) μ F 2 i ( h ) = ( 2.9 , 2.2 , 1.8 ) , ( t d υ ) G 1 G 2 ( h ) = ( t d υ ) G 1 ( h ) + ( t d υ ) G 2 ( h ) υ F 1 i ( h ) υ F 2 i ( h ) = ( 2.3 , 2.8 , 3.2 ) .
Therefore, t d G 1 G 2 ( h ) = ( ( 2.9 , 2.2 , 1.8 ) , ( 2.3 , 2.8 , 3.2 ) ) .
Since f L 1 L 2 and e f M 1 M 2 , thus,
( t d μ ) G 1 G 2 ( f ) = ( t d μ ) G 1 ( f ) + ( t d μ ) G 2 ( f ) μ 1 i ( e f ) μ 2 i ( e f ) = ( 2 , 1.5 , 1 ) , ( t d υ ) G 1 G 2 ( f ) = ( t d υ ) G 1 ( f ) + ( t d υ ) G 2 ( f ) υ 1 i ( e f ) υ 2 i ( e f ) = ( 1.6 , 2.1 , 2.3 ) .
Therefore, t d G 1 G 2 ( f ) = ( ( 2 , 1.5 , 1 ) , ( 1.6 , 2.1 , 2.3 ) ) .
( t d μ ) G 1 G 2 ( f ) = ( t d μ ) G 1 ( f ) + ( t d μ ) G 2 ( f ) μ 1 i ( e f ) μ 2 i ( e f ) μ F 1 i ( f ) μ F 2 i ( f ) , = ( 2.9 , 2.2 , 1.6 ) , ( t d υ ) G 1 G 2 ( f ) = ( t d υ ) G 1 ( f ) + ( t d υ ) G 2 ( f ) υ 1 i ( e f ) υ 2 i ( e f ) υ F 1 i ( f ) υ F 2 i ( f ) , = ( 2.1 , 2.7 , 3.1 ) .
Therefore, t d G 1 G 2 ( f ) = ( ( 2.9 , 2.2 , 1.6 ) , ( 2.1 , 2.7 , 3.1 ) ) .

6. Some Topological Indices for Multi Polar q-Rung Orthopair Fuzzy Graphs

The physicochemical properties of molecular structures are well described with a numeric value which is known as Topological index. Topological indices of a graph have a wide range of implication in network design, theoretical chemistry, data transmission, etc. In fuzzy graphs these topological indices play very important role and have thorough implications. We named them modified topological indices as these are new in fuzzy graphs. In 2020 , Kalathian et al. [45] established several toplogical indices of fuzzy graphs inclusive of Zagreb indices of two kinds, Randic index, and Harmonic index. Further these indices are cumputed for IFG by Dinar et al. [46] in 2023. Firstly in this part of the monograph we introduce the topological indices of multi polar q-rung fuzzy graphs and then computed these indices in an example.
Definition 27. 
Let S = ( F , ) be the multi polar q-rung orthopair fuzzy graph of G = ( L , M ) , where
F = ς , ( μ F 1 ς , μ F 2 ς , , μ F m ς ) , ( υ F 1 ς , υ F 2 ς , , υ F m ς ) : ς X ,
= ς η , ( μ F 1 ς η , μ F 2 ς η , , μ F m ς η ) , ( υ F 1 ς η , υ F 2 ς η , , υ F m ς η ) : ς η X × X .
Then the first Zagreb index is represnted by M 1 ( S ) and defined as
M 1 ( S ) = ( M 1 1 ( S ) , M 1 2 ( S ) , , M 1 m ( S ) ) ,
where,
M 1 i ( S ) = ς L ( ( μ F i ( ς ) ) 2 ( d μ i ( ς ) ) 2 ) + ( ( υ F i ( ς ) ) 2 ( d υ i ( ς ) ) 2 ) , = ς L ( ( μ F i ( ς ) ) ( d μ i ( ς ) ) ) 2 + ς L ( ( υ F i ( ς ) ) ( d υ i ( ς ) ) ) 2 , = μ ( M 1 i ( S ) ) + υ ( M 1 i ( S ) ) ,
for i = 1 , 2 , 3 , , m .
Definition 28. 
Let S = ( F , ) be the multi polar q-rung orthopair fuzzy graph of G = ( L , M ) .   M 2 ( S ) represnts the second Zagreb index which is defined as
M 2 ( S ) = ( M 2 1 ( S ) , M 2 2 ( S ) , , M 2 m ( S ) ) , M 2 i ( S ) = ς η M [ μ F i ( ς ) . μ F i ( η ) . d μ i ( ς ) . d μ i ( η ) ] + ς η M [ υ F i ( ς ) . υ F i ( η ) . d υ i ( ς ) . d υ i ( η ) ] , M 2 ( S ) = μ ( M 2 i ( S ) ) + υ ( M 2 i ( S ) ) .
for i = 1 , 2 , 3 , , m .
Definition 29. 
Let S = ( F , ) be the multi polar q-rung orthopair fuzzy graph of G = ( L , M ) . The Randic index is denoted by R ( S ) and defined as
R ( S ) = ( R 1 ( S ) , R 2 ( S ) , , R m ( S ) ) ,
where,
R i ( S ) = ς η M 1 ( μ F i ( ς ) . μ F i ( η ) . d μ i ( ς ) . d μ i ( η ) ) + ς η M 1 ( υ F i ( ς ) . υ F i ( η ) . d υ i ( ς ) . d υ i ( η ) ) , R i ( S ) = μ ( R i ( S ) ) + υ ( R i ( S ) ) .
for i = 1 , 2 , 3 , , m .
Definition 30. 
Let S = ( F , ) be the multi polar q-rung orthopair fuzzy graph of G = ( L , M ) . The Harmonic index is represented by H ( S ) and defined as
H ( S ) = ( H 1 ( S ) , H 2 ( S ) , , H m ( S ) ) ,
where,
H i ( S ) = ς η M 2 μ F i ( ς ) . μ F i ( η ) ( d μ i ( ς ) + d μ i ( η ) ) + ς η M 2 υ F i ( ς ) . υ F i ( η ) d υ i ( ς ) + d υ i ( η ) , H i ( S ) = μ ( H i ( S ) ) + υ ( H i ( S ) ) ,
for i = 1 , 2 , 3 , , m .
Example 10. 
Consider S = F , be a 3-polar 3-rung orthopair fuzzy graph of G = ( L , M ) , where L = { a , b , c } and M = { a b , b c , a c } are vertex set and edge set, respectively, as given in the Figure 13 and Table 21. Then we find the first and second kind of Zagreb indices, Randic index and Harmonic index of this graph.
By direct calculation, we have
d ( a ) = ( ( 1.1 , 0.9 , 0.7 ) , ( 1.4 , 1.6 , 1.7 ) ) , d ( b ) = ( ( 1.3 , 1.1 , 0.9 ) , ( 1.3 , 1.5 , 1.6 ) ) , d ( c ) = ( ( 1.2 , 1 , 0.8 ) , ( 1.3 , 1.5 , 1.7 ) ) .
Now by using definition, we calculate first Zagreb index
M 1 ( S ) = ( M 1 1 ( S ) , M 1 2 ( S ) , M 1 3 ( S ) ) ,
where,
M 1 1 ( S ) = μ ( M 1 1 ( S ) ) + υ ( M 1 1 ( S ) ) , μ ( M 1 1 ( S ) ) = ( μ 1 ( a ) . d μ 1 ( a ) ) 2 + ( μ 1 ( b ) . d μ 1 ( b ) ) 2 + ( μ 1 ( c ) . d μ 1 ( c ) ) 2 , μ ( M 1 1 ( S ) ) = ( 0.77 ) 2 + ( 1.04 ) 2 + ( 1.08 ) 2 , μ ( M 1 1 ( S ) ) = 2.8409 . υ ( M 1 1 ( S ) ) = ( υ ( a ) . d υ ( a ) ) 2 + ( υ ( b ) . d υ ( b ) ) 2 + ( υ ( c ) . d υ ( c ) ) 2 , υ ( M 1 1 ( S ) ) = ( 1.12 ) 2 + ( 0.91 ) 2 + ( 0.78 ) 2 , υ ( M 1 1 ( S ) ) = 2.6909 ,
hence, M 1 1 ( S ) = μ ( M 1 1 ( S ) ) + υ ( M 1 1 ( S ) ) and in similar mannar we calculate M 1 2 ( S ) and M 1 3 ( S ) ,
M 1 1 ( S ) = μ ( M 1 1 ( S ) ) + υ ( M 1 1 ( S ) ) = 2.8409 + 2.6909 = 5.5318 , M 1 2 ( S ) = μ ( M 1 2 ( S ) ) + υ ( M 1 2 ( S ) ) = 1.5245 + 4.6161 = 6.1406 , M 1 3 ( S ) = μ ( M 1 3 ( S ) ) + υ ( M 1 3 ( S ) ) = 0.7277 + 6.2641 = 6.9916 ,
M 1 ( S ) = ( M 1 1 ( S ) , M 1 2 ( S ) , M 1 3 ( S ) ) , M 1 ( S ) = ( 5.5318 , 6.1406 , 6.9916 ) .
We also observed that
μ ( M 1 ( S ) ) = ( μ ( M 1 1 ( S ) ) μ ( M 1 2 ( S ) ) μ ( M 1 3 ( S ) ) ) , μ ( M 1 ( S ) ) = ( 2.8409 1.5245 0.7277 ) , a n d υ ( M 1 ( S ) ) = ( υ ( M 1 1 ( S ) ) υ ( M 1 2 ( S ) ) υ ( M 1 3 ( S ) ) ) , υ ( M 1 ( S ) ) = ( 2.6909 4.6161 6.2641 ) ,
Now we calculate second Zagreb index by using definition,
M 2 1 ( S ) = μ ( M 2 1 ( S ) ) + υ ( M 2 1 ( S ) ) = 2.7556 + 2.6060 = 5.3582 , M 2 2 ( S ) = μ ( M 2 2 ( S ) ) + υ ( M 2 2 ( S ) ) = 1.4638 + 4.5 = 5.9638 , M 2 3 ( S ) = μ ( M 2 3 ( S ) ) + υ ( M 2 3 ( S ) ) = 0.6874 + 6.2424 = 6.9298 ,
M 2 ( S ) = ( M 2 1 ( S ) , M 2 2 ( S ) , M 2 3 ( S ) ) , M 2 ( S ) = ( 5.3582 , 5.9638 , 6.9298 ) .
Also we have,
μ ( M 2 ( S ) ) = ( μ ( M 2 1 ( S ) ) μ ( M 2 2 ( S ) ) μ ( M 2 3 ( S ) ) ) , ( M 2 ( S ) ) = ( 2.7556 1.4638 0.6874 ) , a n d υ ( M 2 ( S ) ) = ( υ ( M 2 1 ( S ) ) υ ( M 2 2 ( S ) ) υ ( M 2 3 ( S ) ) ) , ( M 2 ( S ) ) = ( 2.6060 4.5 6.2424 ) .
Now by using definition we calculate Randic index
R 1 ( S ) = μ ( R 1 ( S ) ) + υ ( R 1 ( S ) ) = 3.1576 + 3.2473 = 6.4049 , R 2 ( S ) = μ ( R 2 ( S ) ) + υ ( R 2 ( S ) ) = 4.3464 + 2.4649 = 6.8113 , R 3 ( S ) = μ ( R 3 ( S ) ) + υ ( R 3 ( S ) ) = 6.3775 + 2.0815 = 8.459 ,
R ( S ) = ( R 1 ( S ) , R 2 ( S ) , R 3 ( S ) ) , R ( S ) = ( 6.4049 , 6.8113 , 8.459 ) .
where we have,
μ ( R ( S ) ) = ( μ ( R 1 ( S ) ) μ ( R 2 ( S ) ) μ ( R 3 ( S ) ) , μ ( R ( S ) ) = ( 3.1576 4.3464 6.3775 ) , a n d υ ( R ( S ) ) = ( υ ( R 1 ( S ) ) υ ( R 2 ( S ) ) υ ( R 3 ( S ) ) , υ ( R ( S ) ) = ( 3.2473 2.4649 2.0815 ) .
Finally we find Harmonic index by using definition
H 1 ( S ) = μ ( H 1 ( S ) ) + υ ( H 1 ( S ) ) = 3.9794 + 4.6975 = 8.6769 , H 2 ( S ) = μ ( H 2 ( S ) ) + υ ( H 2 ( S ) ) = 6.2745 + 3.1106 = 9.3851 , H 3 ( S ) = μ ( H 3 ( S ) ) + υ ( H 3 ( S ) ) = 10.7773 + 2.4069 = 13.1842 ,
H ( S ) = ( H 1 ( S ) , H 2 ( S ) , H 3 ( S ) ) , H ( S ) = ( 8.6769 , 9.3851 , 13.1842 ) .
We observed that,
μ ( H ( S ) ) = ( μ ( H 1 ( S ) ) μ ( H 2 ( S ) ) μ ( H 3 ( S ) ) , μ ( H ( S ) ) = ( 3.9794 6.2745 10.7773 ) , a n d υ ( H ( S ) ) = ( υ ( H 1 ( S ) ) υ ( H 2 ( S ) ) υ ( H 3 ( S ) ) , υ ( H ( S ) ) = ( 4.6975 3.1106 2.4069 ) .
Theorem 13. 
If two m- SqROSSG s S = ( F S , S ) and Q = ( F Q , Q ) are isomorphic to each other, then these graphs have equal topological indices values.
Proof. 
Let S = ( F S , S ) and Q = ( F Q , Q ) be two isomorphic m- SqROSSG s . Then there we have an identity function, I F : F S ( t ) F Q ( s ) for every t L S there exist s L Q as well as for each t j t k S there exist s j s k Q such that I : S ( t j t k ) Q ( s j s k ) ( i . e . ) for vertices and edges of S = ( F S , S ) each membership value coincides with the values of graph Q = ( F Q , Q ) . Therefore, we conclude that, with same membership values for equal collection of vertices and edges the graph structures may differ but there topological indices values are equal. □
Corollary 1. 
If the topological values of two m SqROSSG s   S = ( F S , S ) and Q = ( F Q , Q ) are same, then the two m- SqROSSG s need not to be isomorphic.
Corollary 2. 
Let S = ( F S , S ) and Q = ( F Q , Q ) be the m- SqROSSG s . Then the union of two m- SqROSSG s S Q is
(i) 
( M 1 i ( S Q ) ) m a x { ( M 1 i ( S ) ) , ( M 1 i ( Q ) ) } ,
(ii) 
( M 2 i ( S Q ) ) m a x { ( M 2 i ( S ) ) , ( M 2 i ( Q ) ) } ,
(iii) 
( R i ( S Q ) ) min { ( R i ( S ) ) , ( R i ( Q ) ) } ,
(iv) 
( H i ( S Q ) ) min { ( H i ( S ) ) , ( H i ( Q ) ) } ,
for i = 1 , 2 , 3 , , m .
Proof. 
We can prove these results with the help of Example 9. □

7. Conclusions

In this monograph we have demonstrated several rudimentary operations on m- FqROFFG s together with their essential results. Firstly, for a vertex in m- FqROFFG , we have defined the degree of vertex then we calculated its total degree. For product operations on m- FqROFFG s , these degrees permit to comprehend their characteristics. Secondly, product operations on m- FqROFFG s , inclusive direct, Cartesian, semi-strong, strong and lexicographic products, are obtained. Thirdly, using degree and total degree of vertex we have defined some general theorems under the obtained product operations on m- FqROFFG s . More specifically, in product operations on m- FqROFFG s the relationship between the degree and total degree of a vertex and the collection of adjoining vertices is analyzed with the help of these theorems. Finally, we have defined some degree based topological indices for m- FqROFFG s and calculated these indices in an example. Due to vast range of implementation in various fields of sciences such as molecular science, medication, computer science, etc., the utilization of topological indices in fuzzy graphs are obtaining attraction. We can define and calculate already existed different topological indices for m- FqROFFG s . In our upcoming work we can extend the application of m- FqROFFG s to chemical structures.

Author Contributions

A.K. wrote the main manuscript text. N.A. and N.Y. supplied the main results. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R87), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

All the authors in the paper have no conflict of interest.

References

  1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  2. Zhang, W.R. Bipolar fuzzy sets and relations: A computational framework forcognitive modeling and multiagent decision analysis. In Proceedings of the 1st International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, San Antonio, TX, USA, 18–21 December 1994; pp. 305–309. [Google Scholar]
  3. Zhang, W.R. Bipolar fuzzy sets. In Proceedings of the International Conference on Fuzzy Systems, Anchorage, AK, USA, 4–9 May 1998; pp. 835–840. [Google Scholar]
  4. Chen, J.; Li, S.; Ma, S.; Wang, X. m-Polar fuzzy sets: An extension of bipolar fuzzy sets. Sci. World J. 2014, 2014, 416530. [Google Scholar] [CrossRef]
  5. Naeem, K.; Riaz, M.; Afzal, D. Pythagorean m-polar fuzzy sets and TOPSIS method for the selection of advertisement mode. J. Intell. Fuzzy Syst. 2019, 37, 8441–8458. [Google Scholar] [CrossRef]
  6. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  7. Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
  8. Peng, X.; Yang, Y. Some results for Pythagorean fuzzy sets. Int. J. Intell. Syst. 2015, 30, 1133–1160. [Google Scholar] [CrossRef]
  9. Hashmi, M.R.; Riaz, M. A novel approach to censuses process by using Pythagorean m-polar fuzzy Dombi’s aggregation operators. J. Intell. Fuzzy Syst. 2020, 38, 1977–1995. [Google Scholar] [CrossRef]
  10. Hashmi, M.R.; Riaz, M.; Smarandache, F. m-Polar neutrosophic topology with applications to multi-criteria decision-making in medical diagnosis and clustering analysis. Int. Fuzzy Syst. 2020, 22, 273–292. [Google Scholar] [CrossRef]
  11. Yagar, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2017, 25, 1220–1230. [Google Scholar] [CrossRef]
  12. Ali, M.I. Another view on q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2018, 33, 2139–2153. [Google Scholar] [CrossRef]
  13. Riaz, M.; Hamid, M.T.; Afzal, D.; Pamucar, D.; Chu, Y.M. Multi-criteria decision making in robotic agri-farming with q-rung orthopair m-polar fuzzy sets. PLoS ONE 2021, 16, e0246485. [Google Scholar] [CrossRef] [PubMed]
  14. Kaufmann, A. Introduction a la Theorie des Sous-Emsembles Flous; Masson et Cia Editeurs: Paris, France, 1973. [Google Scholar]
  15. Rosenfeld, A. Fuzzy Graphs, Fuzzy Sets and Their Applications to Cognitive and Decision Processes; Academic Press: New York, NY, USA, 1975; pp. 77–95. [Google Scholar]
  16. Bhattacharya, P. Some remarks on fuzzy graphs. Pattern Recognit. Lett. 1987, 6, 297–302. [Google Scholar] [CrossRef]
  17. Mordeson, J.N.; Nair, P.S. Cycles and cocycles of fuzzy graphs. Inf. Sci. 1996, 90, 39–49. [Google Scholar] [CrossRef]
  18. Gani, A.N.; Begum, S.S. Degree, order and size in intuitionistic fuzzy graphs. Int. J. Algorithms Comput. Math. 2010, 3, 11–16. [Google Scholar]
  19. Gani, A.N.; Latha, S.R. On irregular fuzzy graphs. Appl. Math. Sci. 2012, 6, 517–523. [Google Scholar]
  20. Akram, M. Bipolar fuzzy graphs. Inf. Sci. 2011, 181, 5548–5564. [Google Scholar] [CrossRef]
  21. Akram, M. Bipolar fuzzy graphs with applications. Knowl.-Based Syst. 2013, 39, 1–8. [Google Scholar] [CrossRef]
  22. Akram, M.; Adeel, A. m-Polar fuzzy graphs and m-polar fuzzy line graphs. J. Discret. Math. Sci. Cryptogr. 2017, 20, 1597–1617. [Google Scholar] [CrossRef]
  23. Akram, M.; Adeel, A. m-Polar fuzzy labeling graphs with application. Math. Comput. Sci. 2016, 10, 387–402. [Google Scholar] [CrossRef]
  24. Akram, M.; Waseem, N. Certain metrics in m-polar fuzzy graphs. New Math. Nat. Comput. 2016, 12, 135–155. [Google Scholar] [CrossRef]
  25. Akram, M.; Akmal, R.; Alshehri, N. On m-Polar Fuzzy Graph Structures. SpringerPlus 2016, 5, 1448. [Google Scholar] [CrossRef] [PubMed]
  26. Akram, M.; Sarwar, M. Novel applications of m-polar fuzzy competition graphs in decision support system. Neural Comput. Appl. 2018, 30, 3145–3165. [Google Scholar] [CrossRef]
  27. Naz, S.; Ashraf, S.; Akram, M. A novel approach to decision-making with Pythagorean fuzzy information. Mathematics 2018, 6, 95. [Google Scholar] [CrossRef]
  28. Naz, S.; Rashmanlou, H.; Malik, M.A. Operations on single valued neutrosophic graphs with application. J. Intell. Fuzzy Syst. 2017, 32, 2137–2151. [Google Scholar] [CrossRef]
  29. Samanta, S.; Akram, M.; Pal, M. m-Step fuzzy competition graphs. J. Appl. Math. Comput. 2015, 47, 461–472. [Google Scholar] [CrossRef]
  30. Habib, A.; Akram, M.; Farooq, A. q-Rung orthopair fuzzy competition graphs with application in the soil ecosystem. Mathematics 2019, 7, 91. [Google Scholar] [CrossRef]
  31. Borzooei, R.A.; Rashmanlou, H. Cayley interval-valued fuzzy graphs. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2016, 78, 83–94. [Google Scholar]
  32. Rashmanlou, H.; Pal, M. Some properties of highly irregular interval-valued fuzzy graphs. World Appl. Sci. J. 2013, 27, 1756–1773. [Google Scholar]
  33. Rashmanlou, H.; Borzooei, R.A. New concepts of interval-valued intuitionistic (S, T)-fuzzy graphs. J. Intell. Fuzzy Syst. 2016, 30, 1893–1901. [Google Scholar] [CrossRef]
  34. Talebi, A.A.; Rashmanlou, H.; Sadati, S.H. Interval-valued Intuitionistic Fuzzy Competition Graph. J. Mult. Log. Soft Comput. 2020, 34, 335–364. [Google Scholar]
  35. Mordeson, J.N.; Chang-Shyh, P. Operations on fuzzy graphs. Inf. Sci. 1994, 79, 159–170. [Google Scholar] [CrossRef]
  36. Mordeson, J.N.; Nair, P.S. Fuzzy Graphs and Fuzzy Hypergraphs; Physica Verlag: Heidelberg, Germany, 2012; Volume 46. [Google Scholar]
  37. Nirmala, G.; Vijaya, M. Fuzzy graphs on composition, tensor and normal products. Int. J. Sci. Res. Publ. 2012, 2, 1–7. [Google Scholar]
  38. Gong, Z.; Wang, Q. Some operations on fuzzy hypergraphs. Ars Comb. 2017, 132, 203–217. [Google Scholar]
  39. Sahoo, S.; Pal, M. Product of intuitionistic fuzzy graphs and degree. J. Intell. Fuzzy Syst. 2017, 32, 1059–1067. [Google Scholar] [CrossRef]
  40. Rashmanlou, H.; Pal, M.; Borzooei, R.A.; Mofidnakhaei, F.; Sarkar, B. Product of interval-valued fuzzy graphs and degree. J. Intell. Fuzzy Syst. 2018, 35, 6443–6451. [Google Scholar] [CrossRef]
  41. Yin, S.; Li, H.; Yang, Y. Product operations on q-rung orthopair fuzzy graphs. Symmetry 2019, 11, 588. [Google Scholar] [CrossRef]
  42. Xu, J. The use of fuzzy graphs in chemical structure research. In Fuzzy Logic in Chemistry; Academic Press: Cambridge, MA, USA, 1997; pp. 249–282. [Google Scholar]
  43. Mordeson, J.N.; Mathew, S. Advanced Topics in Fuzzy Graph Theory; Springer: Berlin/Heidelberg, Germany, 2019; Volume 375. [Google Scholar]
  44. Naeem, T.; Gumaei, A.; Kamran Jamil, M.; Alsanad, A.; Ullah, K. Connectivity indices of intuitionistic fuzzy graphs and their applications in internet routing and transport network flow. Math. Probl. Eng. 2021, 2021, 4156879. [Google Scholar] [CrossRef]
  45. Kalathian, S.; Ramalingam, S.; Raman, S.; Srinivasan, N. Some topological indices in fuzzy graphs. J. Intell. Fuzzy Syst. 2020, 39, 6033–6046. [Google Scholar] [CrossRef]
  46. Dinar, J.; Hussain, Z.; Zaman, S.; Rehman, S.U. Wiener index for an intuitionistic fuzzy graph and its application in water pipeline network. Ain Shams Eng. J. 2023, 14, 101826. [Google Scholar] [CrossRef]
Figure 1. 3-polar 3-rung fuzzy graph.
Figure 1. 3-polar 3-rung fuzzy graph.
Symmetry 15 02131 g001
Figure 2. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ) .
Figure 2. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ) .
Symmetry 15 02131 g002
Figure 3. Direct product ( G 1 × G 2 ).
Figure 3. Direct product ( G 1 × G 2 ).
Symmetry 15 02131 g003
Figure 4. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ).
Figure 4. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ).
Symmetry 15 02131 g004
Figure 5. Cartesian product G 1 G 2 ).
Figure 5. Cartesian product G 1 G 2 ).
Symmetry 15 02131 g005
Figure 6. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ).
Figure 6. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ).
Symmetry 15 02131 g006
Figure 7. Semi strong product ( G 1 · G 2 ).
Figure 7. Semi strong product ( G 1 · G 2 ).
Symmetry 15 02131 g007
Figure 8. Strong product ( G 1 G 2 ).
Figure 8. Strong product ( G 1 G 2 ).
Symmetry 15 02131 g008
Figure 9. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ).
Figure 9. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ).
Symmetry 15 02131 g009
Figure 10. Lexicographic product G 1 G 2 .
Figure 10. Lexicographic product G 1 G 2 .
Symmetry 15 02131 g010
Figure 11. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ).
Figure 11. G 1 = ( F 1 , 1 ) , G 2 = ( F 2 , 2 ).
Symmetry 15 02131 g011
Figure 12. Union G 1 G 2 .
Figure 12. Union G 1 G 2 .
Symmetry 15 02131 g012
Figure 13. S = F , .
Figure 13. S = F , .
Symmetry 15 02131 g013
Table 1. G 1 = ( F 1 , 1 ) .
Table 1. G 1 = ( F 1 , 1 ) .
L ( G 1 ) μ F 1 i ( ς j ) υ F 1 i ( ς j ) M ( G 1 ) μ 1 i ( ς j ς k ) υ 1 i ( ς j ς k )
f ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.8 , 0.8 ) f g ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
g ( 0.8 , 0.7 , 0.5 ) ( 0.6 , 0.8 , 0.9 ) g h ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.9 )
h ( 0.9 , 0.8 , 0.6 ) ( 0.6 , 0.7 , 0.8 ) f h ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
Table 2. G 2 = ( F 2 , 2 ) .
Table 2. G 2 = ( F 2 , 2 ) .
L ( G 2 ) μ F 2 i ( ς j ) υ F 2 i ( ς j ) M ( G 2 ) μ 2 i ( ς j ς k ) υ 2 i ( ς j ς k )
j ( 0.9 , 0.8 , 0.7 ) ( 0.5 , 0.6 , 0.7 ) j k ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 )
k ( 0.8 , 0.7 , 0.6 ) ( 0.7 , 0.8 , 0.9 ) j l ( 0.8 , 0.7 , 0.5 ) ( 0.6 , 0.6 , 0.8 )
l ( 0.9 , 0.7 , 0.5 ) ( 0.6 , 0.7 , 0.9 )
Table 3. Vertex set ( G 1 × G 2 ).
Table 3. Vertex set ( G 1 × G 2 ).
L ( G 1 × G 2 ) ( μ F 1 i × μ F 2 i ) ( ς j , ς k ) υ F 1 i × υ F 2 i ς j , ς k
( f , j ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.8 , 0.8 )
( g , j ) ( 0.8 , 0.7 , 0.5 ) ( 0.6 , 0.8 , 0.9 )
( h , j ) ( 0.9 , 0.8 , 0.6 ) ( 0.6 , 0.7 , 0.8 )
( f , k ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.8 , 0.9 )
( g , k ) ( 0.8 , 0.7 , 0.5 ) ( 0.7 , 0.8 , 0.9 )
( h , k ) ( 0.8 , 0.7 , 0.6 ) ( 0.7 , 0.8 , 0.9 )
( f , l ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.8 , 0.9 )
( g , l ) ( 0.8 , 0.7 , 0.5 ) ( 0.6 , 0.8 , 0.9 )
( h , l ) ( 0.9 , 0.7 , 0.5 ) ( 0.6 , 0.7 , 0.9 )
Table 4. Edge set ( G 1 × G 2 ).
Table 4. Edge set ( G 1 × G 2 ).
M ( G 1 × G 2 ) ( μ 1 i × μ 2 i ) ( ς j , ς k ) ( ς p , ς q ) υ 1 i × υ 2 i ς j , ς k ( ς p , ς q )
( f , j ) ( g , k ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( f , j ) ( g , l ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( f , j ) ( h , k ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( f , j ) ( h , l ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( f , l ) ( g , j ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( f , l ) ( h , j ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( f , k ) ( g , j ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( f , k ) ( h , j ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( g , j ) ( h , l ) ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.9 )
( g , j ) ( h , k ) ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.9 )
( g , l ) ( h , j ) ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.9 )
( g , k ) ( h , j ) ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.9 )
Table 5. G 1 = ( F 1 , 1 ).
Table 5. G 1 = ( F 1 , 1 ).
L ( G 1 ) μ F 1 i ( ς j ) υ F 1 i ( ς j ) M ( G 1 ) μ 1 i ( ς j ς k ) υ 1 i ( ς j ς k )
r ( 0.8 , 0.7 , 0.6 ) ( 0.7 , 0.7 , 0.8 ) r s ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
s ( 0.9 , 0.6 , 0.6 ) ( 0.6 , 0.7 , 0.8 ) s t ( 0.8 . 0.6 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
t ( 0.9 , 0.8 , 0.7 ) ( 0.5 , 0.6 , 0.7 ) t r ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
Table 6. G 2 = ( F 2 , 2 ).
Table 6. G 2 = ( F 2 , 2 ).
L ( G 2 ) μ F 2 i ( ς j ) υ F 2 i ( ς j ) M ( G 2 ) μ 2 i ( ς j ς k ) υ 2 i ( ς j ς k )
v ( 0.8 , 0.8 , 0.7 ) ( 0.6 , 0.6 , 0.8 ) v w ( 0.7 , 0.6 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
w ( 0.8 , 0.7 , 0.7 ) ( 0.7 , 0.7 , 0.8 )
Table 7. Vertex set ( G 1 G 2 ).
Table 7. Vertex set ( G 1 G 2 ).
L ( G 1 G 2 ) ( μ F 1 i μ F 2 i ) ( ς j , ς k ) υ 1 i υ 2 i ς j , ς k
( r , v ) ( 0.8 , 0.7 , 0.6 ) ( 0.6 , 0.7 , 0.8 )
( r , w ) ( 0.8 , 0.7 , 0.6 ) ( 0.5 , 0.6 , 0.7 )
( s , v ) ( 0.8 , 0.6 , 0.6 ) ( 0.6 , 0.7 , 0.8 )
( s , w ) ( 0.8 , 0.6 , 0.6 ) ( 0.6 , 0.7 , 0.8 )
( t , v ) ( 0.8 , 0.8 , 0.7 ) ( 0.6 , 0.7 , 0.8 )
( t , w ) ( 0.8 , 0.7 , 0.7 ) ( 0.5 , 0.6 , 0.7 )
Table 8. Edge set ( G 1 G 2 ).
Table 8. Edge set ( G 1 G 2 ).
M ( G 1 G 2 ) ( μ 1 i μ 2 i ) ( ς j , ς k ) ( ς w , ς q ) υ 1 i υ 2 i ς j , ς k ( ς w , ς q )
( r , v ) ( s , v ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( r , v ) ( t , v ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( r , v ) ( r , w ) ( 0.7 , 0.6 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
( r , w ) ( s , w ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( r , w ) ( t , w ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( s , v ) ( s , w ) ( 0.7 , 0.6 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
( s , v ) ( t , v ) ( 0.8 , 0.6 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
( t , v ) ( t , w ) ( 0.7 , 0.6 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
( s , w ) ( t , w ) ( 0.8 , 0.6 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
Table 9. G 1 = ( F 1 , 1 ).
Table 9. G 1 = ( F 1 , 1 ).
L ( G 1 ) μ F 1 i ( ς j ) υ F 1 i ( ς j ) M ( G 1 ) μ 1 i ( ς j ς k ) υ 1 i ( ς j ς k )
o ( 0.9 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 ) o p ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
p ( 0.8 , 0.7 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
Table 10. G 2 = ( F 2 , 2 ).
Table 10. G 2 = ( F 2 , 2 ).
L ( G 2 ) μ F 2 i ( ς j ) υ F 2 i ( ς j ) M ( G 2 ) μ 2 i ( ς j ς k ) υ 2 i ( ς j ς k )
a ( 0.7 , 0.6 , 0.6 ) ( 0.6 , 0.6 , 0.8 ) a b ( 0.7 , 0.5 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
b ( 0.8 , 0.7 , 0.5 ) ( 0.7 , 0.7 , 0.8 ) b c ( 0.8 , 0.6 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
c ( 0.9 , 0.8 , 0.6 ) ( 0.6 , 0.7 , 0.7 ) a c ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
Table 11. Vertex set ( F 1 · F 2 ).
Table 11. Vertex set ( F 1 · F 2 ).
L ( G 1 · G 2 ) ( μ F 1 i · μ F 2 i ) ( ς j , ς k ) ( υ F 1 i · υ F 2 i ) ( ς j , ς k )
( o , a ) ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 )
( o , b ) ( 0.8 , 0.7 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( o , c ) ( 0.9 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 )
( p , a ) ( 0.8 , 0.7 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
( p , b ) ( 0.8 , 0.7 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( p , c ) ( 0.8 , 0.7 , 0.6 ) ( 0.7 , 0.7 , 0.8 )
Table 12. Edge set ( 1 · 2 ).
Table 12. Edge set ( 1 · 2 ).
M ( G 1 · G 2 ) ( μ 1 i · μ 2 i ) ( ς j , ς k ) ( ς p , ς q ) ( υ 1 i · υ 2 i ) ς j , ς k ( ς p , ς q )
( o , a ) ( o , b ) ( 0.7 , 0.5 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( o , a ) ( o , c ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( o , a ) ( p , c ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( o , a ) ( p , b ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( o , b ) ( o , c ) ( 0.8 , 0.6 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( o , b ) ( p , c ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( o , b ) ( p , a ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( o , c ) ( p , a ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( o , c ) ( p , b ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( p , c ) ( p , a ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
( p , c ) ( p , b ) ( 0.8 , 0.6 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( p , b ) ( p , a ) ( 0.7 , 0.5 , 0.5 ) ( 0.7 , 0.7 , 0.8 )
Table 13. Additional edges for Edge set ( 1 2 ).
Table 13. Additional edges for Edge set ( 1 2 ).
M ( G 1 G 2 ) ( μ 1 i μ 2 i ) ( ς j , ς k ) ( ς p , ς q ) υ 1 i υ 2 i ς j , ς k ( ς p , ς q )
( o , a ) ( p , a ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( o , b ) ( p , b ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
( o , c ) ( p , c ) ( 0.7 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
Table 14. G 1 = ( F 1 , 1 ) .
Table 14. G 1 = ( F 1 , 1 ) .
L ( G 1 ) μ F 1 i ( ς j ) υ F 1 i ( ς j ) M ( G 1 ) μ 1 i ( ς j ς k ) υ 1 i ( ς j ς k )
l ( 0.8 , 0.7 , 0.6 ) ( 0.5 , 0.6 , 0.7 ) l m ( 0.6 , 0.4 , 0.3 ) ( 0.6 , 0.7 , 0.8 )
m ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 ) n l ( 0.7 . 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 )
n ( 0.9 , 0.8 , 0.7 ) ( 0.5 , 0.6 , 0.7 ) m n ( 0.6 , 0.5 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
Table 15. G 2 = ( F 2 , 2 ) .
Table 15. G 2 = ( F 2 , 2 ) .
L ( G 2 ) μ F 2 i ( ς j ) υ F 2 i ( ς j ) M ( G 2 ) μ 2 i ( ς j ς k ) υ 2 i ( ς j ς k )
o ( 0.9 , 0.8 , 0.7 ) ( 0.6 , 0.7 , 0.8 ) o p ( 0.6 , 0.5 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
p ( 0.7 , 0.6 , 0.5 ) ( 0.4 , 0.6 , 0.7 ) o q ( 0.7 , 0.5 , 0.3 ) ( 0.6 , 0.7 , 0.8 )
q ( 0.8 , 0.7 , 0.5 ) ( 0.4 , 0.5 , 0.6 )
Table 16. Edge set G 1 G 2 .
Table 16. Edge set G 1 G 2 .
M ( G 1 G 2 ) ( μ 1 i μ 2 i ) ( n , o ) ( ς j , ς k ) ( υ 1 i υ 2 i ) ( n , o ) ( ς j , ς k )
( n , o ) ( m , q ) ( 0.6 , 0.5 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
( n , o ) ( m , p ) ( 0.6 , 0.5 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
( n , o ) ( m , o ) ( 0.6 , 0.5 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
( n , o ) ( l , q ) ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 )
( n , o ) ( l , p ) ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 )
( n , o ) ( l , o ) ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 )
( n , o ) ( n , q ) ( 0.7 , 0.5 , 0.3 ) ( 0.6 , 0.7 , 0.8 )
( n , o ) ( n , p ) ( 0.6 , 0.5 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
Table 17. G 1 = ( F 1 , 1 ) .
Table 17. G 1 = ( F 1 , 1 ) .
L ( G 1 ) μ F 1 i ( ς j ) υ F 1 i ( ς j ) M ( G 1 ) μ 1 i ( ς j ς k ) υ 1 i ( ς j ς k )
e ( 0.8 , 0.6 , 0.5 ) ( 0.7 , 0.8 , 0.9 ) e f ( 0.7 , 0.6 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
f ( 0.9 , 0.7 , 0.6 ) ( 0.5 , 0.6 , 0.8 ) f g ( 0.7 , 0.5 , 0.3 ) ( 0.6 , 0.7 , 0.7 )
g ( 0.8 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 ) g h ( 0.6 , 0.5 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
h ( 0.9 , 0.8 , 0.7 ) ( 0.6 , 0.7 , 0.8 ) e h ( 0.8 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
Table 18. G 2 = ( F 2 , 2 ) .
Table 18. G 2 = ( F 2 , 2 ) .
L ( G 2 ) μ F 2 i ( ς j ) υ F 2 i ( ς j ) M ( G 2 ) μ 2 i ( ς j ς k ) υ 2 i ( ς j ς k )
e ( 0.9 , 0.8 , 0.6 ) ( 0.6 , 0.7 , 0.8 ) e f ( 0.6 , 0.5 , 0.4 ) ( 0.5 , 0.7 , 0.9 )
f ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.8 , 0.9 ) f h ( 0.6 , 0.4 , 0.3 ) ( 0.5 , 0.7 , 0.8 )
h ( 0.8 , 0.7 , 0.6 ) ( 0.5 , 0.8 , 0.9 )
Table 19. Vertex set ( F 1 F 2 ).
Table 19. Vertex set ( F 1 F 2 ).
L ( G 1 G 2 ) ( μ F 1 i μ F 2 i ) ( ς j ) υ F 1 i υ F 2 i ς j
e ( 0.9 , 0.8 , 0.6 ) ( 0.6 , 0.7 , 0.8 )
f ( 0.9 , 0.7 , 0.6 ) ( 0.5 , 0.6 , 0.8 )
g ( 0.8 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
h ( 0.9 , 0.8 , 0.7 ) ( 0.5 , 0.7 , 0.8 )
Table 20. Edge set ( 1 2 ) .
Table 20. Edge set ( 1 2 ) .
M ( G 1 G 2 ) ( μ 1 i μ 2 i ) ( ς j ς k ) υ 1 i υ 2 i ς j ς k
e f ( 0.7 , 0.6 , 0.4 ) ( 0.5 , 0.7 , 0.8 )
f g ( 0.7 , 0.5 , 0.3 ) ( 0.6 , 0.7 , 0.7 )
g h ( 0.6 , 0.5 , 0.4 ) ( 0.6 , 0.7 , 0.8 )
e h ( 0.8 , 0.5 , 0.4 ) ( 0.7 , 0.7 , 0.8 )
f h ( 0.6 , 0.4 , 0.3 ) ( 0.5 , 0.7 , 0.8 )
Table 21. S = F , .
Table 21. S = F , .
L ( S ) μ F i ( ς j ) υ F i ( ς j ) M ( S ) μ i ( ς j ς k ) υ i ( ς j ς k )
a ( 0.7 , 0.6 , 0.5 ) ( 0.8 , 0.9 , 0.9 ) a b ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.8 , 0.8 )
b ( 0.8 , 0.7 , 0.6 ) ( 0.7 , 0.8 , 0.9 ) b c ( 0.7 , 0.6 , 0.5 ) ( 0.6 , 0.7 , 0.8 )
c ( 0.9 , 0.8 , 0.7 ) ( 0.6 , 0.7 , 0.8 ) a c ( 0.5 , 0.4 , 0.3 ) ( 0.7 , 0.8 , 0.9 )
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kausar, A.; Abughazalah, N.; Yaqoob, N. Multi Polar q-Rung Orthopair Fuzzy Graphs with Some Topological Indices. Symmetry 2023, 15, 2131. https://doi.org/10.3390/sym15122131

AMA Style

Kausar A, Abughazalah N, Yaqoob N. Multi Polar q-Rung Orthopair Fuzzy Graphs with Some Topological Indices. Symmetry. 2023; 15(12):2131. https://doi.org/10.3390/sym15122131

Chicago/Turabian Style

Kausar, Andleeb, Nabilah Abughazalah, and Naveed Yaqoob. 2023. "Multi Polar q-Rung Orthopair Fuzzy Graphs with Some Topological Indices" Symmetry 15, no. 12: 2131. https://doi.org/10.3390/sym15122131

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop