The Relationship between the Box Dimension of Continuous Functions and Their (k,s)-Riemann–Liouville Fractional Integral
Abstract
:1. Introduction
- 1.
- If , then
- 2.
- If the Box dimension of exists and equals , then
2. Preliminaries
- (1)
- Any functions mentioned in this article are continuous, and we denote all of them as on I;
- (2)
- For any function , it is reasonable to assume according to Proposition 1;
- (3)
- For convenience, all C mentioned in this article are constants, which can represent different positive values without causing objection;
- (4)
- If is continuous or bounded on I, there exists a positive constant number Q such that ;
- (5)
- For any , assume that I is divided into sub-intervals with equal width , i.e, ;
- (6)
- Set . Sometimes, write
- (7)
- For any continuous function and a closed interval , we write for the maximum range of over the interval as
3. Analysis Properties of -RLFI
4. Main Results
- (1)
- ;
- (2)
- ;
- (3)
- If is a constant function, then
- (4)
- or
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Latif, M.A.; Hussain, S. New inequalities of ostrowski type for co-ordinated convex functions via fractional integrals. J. Frac. Calc. Appl. 2012, 2, 1–15. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional calculus within the optical model used in nuclear and particle physics. J. Phys. G Nucl. Part. Phys. 2023, 50, 065102. [Google Scholar] [CrossRef]
- Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Ntouyas, S.K. Generalized Liouville-Caputo fractional differential equations and inclusions with nonlocal generalized fractional integral and multipoint boundary conditions. Symmetry 2018, 10, 667. [Google Scholar] [CrossRef]
- Jain, S.; Cattani, C.; Agarwal, P. Fractional hypergeometric functions. Symmetry 2022, 14, 714. [Google Scholar] [CrossRef]
- Izadi, M.; Cattani, C. Generalized Bessel polynomial for multi-order fractional differential equations. Symmetry 2020, 12, 1260. [Google Scholar] [CrossRef]
- Abdalla, M.; Akel, M.; Choi, J. Certain matrix Riemann-Liouville fractional integrals associated with functions involving generalized Bessel matrix polynomials. Symmetry 2021, 13, 622. [Google Scholar] [CrossRef]
- Duan, J.S.; Chen, L. Solution of fractional differential equation systems and computation of matrix Mittag-Leffler functions. Symmetry 2018, 10, 503. [Google Scholar] [CrossRef]
- Ruan, H.J.; Su, W.Y.; Yao, K. Box dimension and fractional integral of linear fractal interpolation functions. J. Approx. 2009, 161, 187–197. [Google Scholar] [CrossRef]
- Liang, Y.S.; Su, W.Y. The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus. Chaos Solitons Fractals 2007, 34, 682–692. [Google Scholar] [CrossRef]
- Liang, Y.S.; Su, W.Y. The relationship between the Box dimension of the Besicovitch functions and the orders of their fractional calculus. Appl. Math. Comput. 2008, 200, 297–307. [Google Scholar] [CrossRef]
- Liang, Y.S. On the fractional calculus of Besicovitch function. Chaos Solitons Fractals 2009, 42, 2741–2747. [Google Scholar] [CrossRef]
- He, G.L.; Zhou, S.P. What is the exact condition for fractional integrals and derivatives of Besicovitch functions to have exact Box dimension. Chaos Solitons Fractals 2005, 26, 867–879. [Google Scholar] [CrossRef]
- Liang, Y.S.; Su, W.Y. Von Koch curve and its fractional calculus. Acta Math. Sin. Chin. Ser. 2011, 54, 227–240. [Google Scholar]
- Tatom, F.B. The relationship between fractional calculus and fractals. Fractals 1995, 3, 217–229. [Google Scholar] [CrossRef]
- Liang, Y.S. Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions. Fract. Calc. Appl. Anal. 2018, 21, 1651–1658. [Google Scholar] [CrossRef]
- Yao, K.; Su, W.Y.; Zhou, S.P. On the fractional calculus functions of a type of Weierstrass function. Chin. Ann. Math. Ser. A 2004, 25, 711–716. [Google Scholar]
- Yao, K.; Liang, Y.S.; Fang, J.X. The fractal dimensions of graphs of the Weyl-Marchaud fractional derivative of the Weierstrass-type function. Chaos Solitons Fractals 2008, 35, 106–115. [Google Scholar] [CrossRef]
- Liang, Y.S.; Su, W.Y. Fractal dimensions of fractional integral of continuous functions. Acta Math. Sin. Engl. Ser. 2016, 32, 1494–1508. [Google Scholar] [CrossRef]
- Wu, J.R. The effects of the Riemann-Liouville fractional integral on the Box dimension of fractal graphs of Hölder continuous functions. Fractals 2020, 28, 2050052. [Google Scholar] [CrossRef]
- Yu, B.Y.; Liang, Y.S. Fractal dimension variation of continuous functions under certain operations. Fractals 2023, 31, 2350044. [Google Scholar] [CrossRef]
- Yu, B.Y.; Liang, Y.S. Construction of monotonous approximation by fractal interpolation functions and fractal dimensions. Fractals 2023, 31, 2440006. [Google Scholar]
- Yu, B.Y.; Liang, Y.S. On the lower and upper Box dimensions of the sum of two fractal functions. Fractal Fract. 2022, 6, 398. [Google Scholar] [CrossRef]
- Yu, B.Y.; Liang, Y.S. Estimation of the fractal dimensions of the linear combination of continuous functions. Mathematics 2022, 10, 2154. [Google Scholar] [CrossRef]
- Yu, B.Y.; Liang, Y.S. Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus. Fract. Calc. Appl. Anal. 2023, 10, 2154. [Google Scholar] [CrossRef]
- Ross, B. Fractional Calculus and Its Applications; Springer: Berlin, Germany, 1975. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience: New York, NY, USA, 1993. [Google Scholar]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Dahmani, Z.; Kiris, M.; Ahmad, F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Díaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Samraiz, M.; Umer, M.; Kashuri, A.; Abdeljawad, T.; Iqbal, S.; Mlaiki, N. On weighted (k,s)-Riemann-Liouville fractional operators and solution of fractional kinetic equation. Fractal Fract. 2021, 5, 118. [Google Scholar] [CrossRef]
- Tomar, M.; Maden, S.; Set, E. (k,s)-Riemann-Liouville fractional integral inequalities for continuous random variables. Arab. J. Math. 2017, 6, 55–63. [Google Scholar] [CrossRef]
- Priya, M.; Uthayakumar, R. Analytical properties of (k,s)-Riemann–Liouville fractional integral and its fractal dimension. J. Anal. 2021, 29, 1391–1402. [Google Scholar] [CrossRef]
- Navish, A.A.; Priya, M.; Uthayakumar, R. The relationship between the order of (k,s)-Riemann-Liouville fractional integral and the fractal dimensions of a fractal function. J. Anal. 2023, 31, 261–277. [Google Scholar] [CrossRef]
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications; John Wiley Sons Inc.: New York, NY, USA, 1990. [Google Scholar]
- Xiao, W. On Box dimension of Hadamard fractional integral (partly answer fractal calculus conjecture). Fractals 2022, 30, 2250094. [Google Scholar] [CrossRef]
- Xiao, W. Relationship of upper Box dimension between continuous fractal functions and their Riemann–Liouville fractional integral. Fractals 2021, 29, 2150264. [Google Scholar] [CrossRef]
- Liang, Y.S. Box dimensions of Riemann-Liouville farctional integrals of continuous functions of bounded variation. Nonlinear Anal. 2010, 72, 4304–4306. [Google Scholar] [CrossRef]
- Zhang, Q. Some remarks on one-dimensional functions and their Riemann-Liouville fractional calculus. Acta Math. Sin. Engl. Ser. 2014, 30, 517–524. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, W. Fractal dimension of Riemann-Liouville fractional integral of certain unbounded variational continuous function. Fractal 2017, 25, 1750047. [Google Scholar] [CrossRef]
- Verma, S.; Viswanathan, P. A note on Katugampola fractional calculus and fractal dimensions. Appl. Math. Comput. 2018, 339, 220–230. [Google Scholar] [CrossRef]
- Wu, J.; Jin, X.; Mi, S.; Tang, J. An effective method to compute the box-counting dimension based on the mathematical definition and intervals. Results Eng. 2020, 6, 100106. [Google Scholar] [CrossRef]
0.1 | 1.7794 |
0.2 | 1.6772 |
0.3 | 1.5801 |
0.4 | 1.4825 |
0.5 | 1.3766 |
0.6 | 1.2703 |
0.7 | 1.1816 |
0.8 | 1.0792 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Xiao, W. The Relationship between the Box Dimension of Continuous Functions and Their (k,s)-Riemann–Liouville Fractional Integral. Symmetry 2023, 15, 2158. https://doi.org/10.3390/sym15122158
Wang B, Xiao W. The Relationship between the Box Dimension of Continuous Functions and Their (k,s)-Riemann–Liouville Fractional Integral. Symmetry. 2023; 15(12):2158. https://doi.org/10.3390/sym15122158
Chicago/Turabian StyleWang, Bingqian, and Wei Xiao. 2023. "The Relationship between the Box Dimension of Continuous Functions and Their (k,s)-Riemann–Liouville Fractional Integral" Symmetry 15, no. 12: 2158. https://doi.org/10.3390/sym15122158
APA StyleWang, B., & Xiao, W. (2023). The Relationship between the Box Dimension of Continuous Functions and Their (k,s)-Riemann–Liouville Fractional Integral. Symmetry, 15(12), 2158. https://doi.org/10.3390/sym15122158