A New Iterative Method for Investigating Modified Camassa–Holm and Modified Degasperis–Procesi Equations within Caputo Operator
Abstract
:1. Introduction
2. Basic Definitions
3. Basic Idea of New Iterative Method (NIM)
4. Convergence Analysis of NIM
5. Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eftekhari, T.; Rashidinia, J. A new operational vector approach for time-fractional subdiffusion equations of distributed order based on hybrid functions. Math. Methods Appl. Sci. 2023, 46, 388–407. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Singapore, 2015. [Google Scholar]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Jiang, X.; Yang, X. A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor. Ann. Nucl. Energy 2024, 195, 110163. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, H.; Yang, X. H1-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems. Numer. Algorithms 2023, 46, 16144–16155. [Google Scholar]
- Zhang, H.; Yang, X.; Tang, Q.; Xu, D. A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation. Comput. Math. Appl. 2022, 109, 180–190. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New general variants of Chebyshev type inequalities via generalized fractional integral operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Abbas, M.I. Controllability and Hyers-Ulam stability results of initial value problems for fractional differential equations via generalized proportional-Caputo fractional derivative. Miskolc Math. Notes 2021, 22, 491–502. [Google Scholar] [CrossRef]
- Nikan, O.; Golbabai, A.; Machado, J.T.; Nikazad, T. Numerical approximation of the time fractional cable model arising in neuronal dynamics. Eng. Comput. 2022, 38, 155–173. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 2017, 143, D4016005. [Google Scholar] [CrossRef]
- Fu, H.; Wu, G.C.; Yang, G.; Huang, L.L. Continuous time random walk to a general fractional Fokker-Planck equation on fractal media. Eur. Phys. J. Spec. Top. 2021, 230, 3927–3933. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience: Hoboken, NJ, USA, 1993. [Google Scholar]
- Botmart, T.; Agarwal, R.P.; Naeem, M.; Khan, A. On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators. AIMS Math. 2022, 7, 12483–12513. [Google Scholar] [CrossRef]
- Kbiri Alaoui, M.; Nonlaopon, K.; Zidan, A.M.; Khan, A. Analytical investigation of fractional-order Cahn-Hilliard and gardner equations using two novel techniques. Mathematics 2022, 10, 1643. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics; Springer: Vienna, Austria, 1997; pp. 291–348. [Google Scholar]
- Aloko, M.D.; Fenuga, O.J.; Okunuga, S.A. Solutions of some non-linear Volterra integro-differential equations of the second kind using modified variational iteration method. FUW Trends Sci. Technol. J. 2019, 4, 298–303. [Google Scholar]
- Butzer, P.L.; Westphal, U. An introduction to fractional calculus. In Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; pp. 1–85. [Google Scholar]
- Mukhtar, S.; Shah, R.; Noor, S. The numerical investigation of a fractional-order multi-dimensional Model of Navier-Stokes equation via novel techniques. Symmetry 2022, 14, 1102. [Google Scholar] [CrossRef]
- Loh, J.R.; Isah, A.; Phang, C.; Toh, Y.T. On the new properties of Caputo-Fabrizio operator and its application in deriving shifted Legendre operational matrix. Appl. Numer. Math. 2018, 132, 138–153. [Google Scholar] [CrossRef]
- Saad Alshehry, A.; Imran, M.; Khan, A.; Weera, W. Fractional View Analysis of Kuramoto-Sivashinsky Equations with Non-Singular Kernel Operators. Symmetry 2022, 14, 1463. [Google Scholar] [CrossRef]
- Carreras, B.A.; Lynch, V.E.; Zaslavsky, G.M. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 2001, 5096–5103. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Iqbal, N.; Aly, S.; Nonlaopon, K. Fractional Series Solution Construction for Nonlinear Fractional Reaction-Diffusion Brusselator Model Utilizing Laplace Residual Power Series. Symmetry 2022, 14, 1944. [Google Scholar] [CrossRef]
- Yasmin, H.; Aljahdaly, N.H.; Saeed, A.M.; Shah, R. Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method. Fractal Fract. 2023, 7, 512. [Google Scholar] [CrossRef]
- Yasmin, H.; Aljahdaly, N.H.; Saeed, A.M.; Shah, R. Investigating Families of Soliton Solutions for the Complex Structured Coupled Fractional Biswas-Arshed Model in Birefringent Fibers Using a Novel Analytical Technique. Fractal Fract. 2023, 7, 491. [Google Scholar] [CrossRef]
- Yasmin, H.; Alshehry, A.S.; Khan, A.; Shah, R.; Nonlaopon, K. Numerical Analysis of the Fractional-Order Belousov-Zhabotinsky System. Symmetry 2023, 15, 834. [Google Scholar] [CrossRef]
- Alshammari, S.; Al-Sawalha, M.M. Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrodinger potential. Fractal Fract. 2023, 7, 140. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, W.; Scattolini, R.; Yu, S.; Xu, X. Robust tube-based model predictive control with Koopman operators. Automatica 2022, 137, 110114. [Google Scholar] [CrossRef]
- Alqhtani, M.; Saad, K.M.; Hamanah, W.M. Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach. Opt. Quantum Electron. 2023, 55, 1149. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Ganie, A.H.; Ahmad, M.W.; Shah, R. Optimal auxiliary function method for analyzing nonlinear system of coupled Schrodinger-KdV equation with Caputo operator. Open Phys. 2023, 21, 20230127. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Ganie, A.H.; Moaddy, K. Unraveling the Dynamics of Singular Stochastic Solitons in Stochastic Fractional Kuramoto-Sivashinsky Equation. Fractal Fract. 2023, 7, 753. [Google Scholar] [CrossRef]
- Dong, X.; Wang, Z.Q.; Niu, L.P.; Yamaguchi, X.D.; Li, H.; Yu, D.C. A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows. Appl. Math. Model. 2023, 117, 219–250. [Google Scholar]
- Li, Q.; Lin, H.; Tan, X.; Du, S. H-∞ Consensus for Multiagent-Based Supply Chain Systems Under Switching Topology and Uncertain Demands. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 4905–4918. [Google Scholar] [CrossRef]
- Li, Y.; Kai, Y. Wave structures and the chaotic behaviors of the cubic-quartic nonlinear Schrodinger equation for parabolic law in birefringent fibers. Nonlinear Dyn. 2023, 111, 8701–8712. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, Y.; Hu, J. On The Role of Community Structure in Evolution of Opinion Formation: A New Bounded Confidence Opinion Dynamics. Inf. Sci. 2023, 621, 672–690. [Google Scholar] [CrossRef]
- Gu, Q.; Li, S.; Liao, Z. Solving nonlinear equation systems based on evolutionary multitasking with neighborhood-based speciation differential evolution. Expert Syst. Appl. 2024, 238, 122025. [Google Scholar] [CrossRef]
- Xuemin, Z.; Ying, R.; Zenggang, X.; Haitao, D.; Fang, X.; Yuan, L. Resource-Constrained and Socially Selfish-Based Incentive Algorithm for Socially Aware Networks. J. Signal Process. Syst. 2023. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Zhou, X.; Fu, R. A driving fatigue feature detection method based on multifractal theory. IEEE Sens. J. 2022, 22, 19046–19059. [Google Scholar] [CrossRef]
- Li, R.; Wu, X.; Tian, H.; Yu, N.; Wang, C. Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Li, R.; Yu, N.; Wang, X.; Liu, Y.; Cai, Z.; Wang, E. Model-based synthetic geoelectric sampling for magnetotelluric inversion with deep neural networks. IEEE Trans. Geosci. Remote. Sens. 2020, 60, 1–14. [Google Scholar] [CrossRef]
- Jin, H.Y.; Wang, Z.A.; Wu, L. Global dynamics of a three-species spatial food chain model. J. Differ. Equ. 2022, 333, 144–183. [Google Scholar] [CrossRef]
- Yel, G.; Baskonus, H.M.; Bulut, H. Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method. Opt. Quantum Electron. 2017, 49, 1–10. [Google Scholar] [CrossRef]
- Ford, N.J.; Xiao, J.; Yan, Y. A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 2011, 14, 454–474. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, H.; Wang, Z.A. Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis. J. Differ. Equ. 2022, 314, 251–286. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Chen, Z.; Yu, N.; Kong, W.; Li, T.; Wang, E.; Wu, X.; Liu, Y. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum. Measurement 2022, 192, 110886. [Google Scholar] [CrossRef]
- Eslami, M.; Fathi Vajargah, B.; Mirzazadeh, M.; Biswas, A. Application of first integral method to fractional partial differential equations. Indian J. Phys. 2014, 88, 177–184. [Google Scholar] [CrossRef]
- Saad Alshehry, A.; Imran, M.; Shah, R.; Weera, W. Fractional-View Analysis of Fokker-Planck Equations by ZZ Transform with Mittag-Leffler Kernel. Symmetry 2022, 14, 1513. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Khater, M. Structure of solitary wave solutions of the nonlinear complex fractional generalized Zakharov dynamical system. Adv. Differ. Equ. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, P.; Turner, I.; Burrage, K.; Anh, V. A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 2014, 38, 3871–3878. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations. Phys. Lett. A 2006, 352, 500–504. [Google Scholar] [CrossRef]
- Kamdem, J.S.; Qiao, Z. Decomposition method for the Camassa-Holm equation. Chaos Solitons Fractals 2007, 31, 437–447. [Google Scholar] [CrossRef]
- Liu, Z.; Ouyang, Z. A note on solitary waves for modified forms of Camassa-Holm and Degasperis-Procesi equations. Phys. Lett. A 2007, 366, 377–381. [Google Scholar] [CrossRef]
- Dubey, V.P.; Kumar, R.; Singh, J.; Kumar, D. An efficient computational technique for time-fractional modified Degasperis-Procesi equation arising in propagation of nonlinear dispersive waves. J. Ocean. Eng. Sci. 2021, 6, 30–39. [Google Scholar] [CrossRef]
- Behera, R.; Mehra, M. Approximate solution of modified camassa-Holm and degasperis-procesi equations using wavelet optimized finite difference method. Int. J. Wavelets Multiresol. Inf. Process. 2013, 11, 1350019. [Google Scholar] [CrossRef]
- Abdel Kader, A.H.; Abdel Latif, M.S. New soliton solutions of the CH-DP equation using lie symmetry method. Mod. Phys. Lett. B 2018, 32, 1850234. [Google Scholar] [CrossRef]
- Falade, K.I.; Tiamiyu, A.T. Numerical solution of partial differential equations with fractional variable coefficients using new iterative method (NIM). Int. J. Math. Sci. Comput. 2020, 3, 12–21. [Google Scholar] [CrossRef]
- Song, S.; Yim, J.; Shin, E.; Lee, H. Posing problems with use the ’what if not’ strategy in NIM game. In Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education, Seoul, Republic of Korea, 8–13 July 2007; PME: Seoul, Republic of Korea, 2007; Volume 4, pp. 193–200. [Google Scholar]
- Zada, L.; Nawaz, R.; Ahsan, S.; Nisar, K.S.; Baleanu, D. New iterative approach for the solutions of fractional order inhomogeneous partial differential equations. AIMS Math. 2021, 6, 1348–1365. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. New iterative method: Application to partial differential equations. Appl. Math. Comput. 2008, 203, 778–783. [Google Scholar] [CrossRef]
- Ahmad, E.-A. Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 2021, 136, 1–22. [Google Scholar]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. Convergence of the new iterative method. Int. J. Differ. Equ. 2011, 2011, 989065. [Google Scholar] [CrossRef]
- Alesemi, M. Numerical Analysis of Fractional-Order Camassa-Holm and Degasperis-Procesi Models. Symmetry 2023, 15, 269. [Google Scholar] [CrossRef]
1.00 | −1.61652 | −1.50964 | −1.47861 | −1.47629 | 0.140224 | 0.0333514 | 2.31575 × 10 |
1.25 | −1.44355 | −1.33153 | −1.30203 | −1.30009 | 0.143463 | 0.0314393 | 1.94461 × 10 |
1.50 | −1.25125 | −1.14729 | −1.12179 | −1.12037 | 0.130877 | 0.0269171 | 1.41111 × 10 |
1.75 | −1.05604 | −0.96895 | −0.948498 | −0.947635 | 0.10841 | 0.021315 | 8.63402 × 10 |
2.00 | −0.871842 | −0.804775 | −0.789349 | −0.788952 | 0.0828896 | 0.015823 | 3.96629 × 10 |
2.25 | −0.707665 | −0.659374 | −0.648295 | −0.648244 | 0.0594201 | 0.0111292 | 5.07339 × 10 |
2.50 | −0.567395 | −0.534372 | −0.52672 | −0.526894 | 0.040501 | 0.00747861 | 1.74132 × 10 |
2.75 | −0.451065 | −0.429334 | −0.424206 | −0.424504 | 0.0265603 | 0.0048294 | 2.98781 × 10 |
3.00 | −0.356509 | −0.342599 | −0.339242 | −0.339592 | 0.0169163 | 0.00300629 | 3.50469 × 10 |
[63] | |||||
---|---|---|---|---|---|
1 | −1.49154 | −1.5147 | −1.50142 | 2.31613 × 10 | 2.324274 × 10 |
2 | −0.802536 | −0.807139 | −0.80532 | 4.60314 × 10 | 3.806376 × 10 |
3 | −0.34657 | −0.343119 | −0.34432 | 3.45024 × 10 | 3.588191 × 10 |
4 | −0.1357 | −0.133158 | −0.13432 | 2.54244 × 10 | 2.55321 × 10 |
5 | −0.0511053 | −0.0499592 | −0.05070 | 1.14616 × 10 | 1.14679 × 10 |
6 | −0.0189647 | −0.0185125 | −0.01872 | 4.52272 × 10 | 4.52305 × 10 |
7 | −0.00699915 | −0.00682852 | −0.00690 | 1.70632 × 10 | 1.70634 × 10 |
8 | −0.00257789 | −0.00251454 | −0.00255 | 6.33528 × 10 | 6.33529 × 10 |
9 | −0.000948764 | −0.000925379 | −0.00089 | 2.3385 × 10 | 2.33851 × 10 |
10 | −0.000349087 | −0.000340473 | −0.00034 | 8.613563 × 10 | 8.613563 × 10 |
1.00 | −1.69213 | −1.60272 | −1.57632 | −1.57362 | 0.118512 | 0.0291003 | 2.70158 × 10 |
1.25 | −1.5046 | −1.41301 | −1.38803 | −1.38561 | 0.118991 | 0.0274026 | 2.42546 × 10 |
1.50 | −1.30145 | −1.21743 | −1.19589 | −1.19393 | 0.107518 | 0.0235019 | 1.96008 × 10 |
1.75 | −1.09853 | −1.02844 | −1.01119 | −1.00974 | 0.0887829 | 0.0186967 | 1.44558 × 10 |
2.00 | −0.908565 | −0.854575 | −0.841566 | −0.840589 | 0.0679769 | 0.0139868 | 9.77286 × 10 |
2.25 | −0.739574 | −0.700571 | −0.691224 | −0.690622 | 0.0489514 | 0.0099492 | 6.01402 × 10 |
2.50 | −0.594898 | −0.568096 | −0.561633 | −0.561306 | 0.0335926 | 0.00679071 | 3.27151 × 10 |
2.75 | −0.474425 | −0.456687 | −0.45235 | −0.452208 | 0.0222178 | 0.00447932 | 1.42767 × 10 |
3.00 | −0.376033 | −0.364611 | −0.361769 | −0.361741 | 0.0142926 | 0.00287059 | 2.83758 × 10 |
[63] | |||||
---|---|---|---|---|---|
1 | −1.58015 | −1.60704 | −1.59532 | 2.68901 × 10 | 2.7044 × 10 |
2 | −0.846361 | −0.856595 | −0.85142 | 1.02336 × 10 | 9.720903 × 10 |
3 | −0.364698 | −0.365056 | −0.36484 | 3.58019 × 10 | 2.62379 × 10 |
4 | −0.14267 | −0.141887 | −0.14192 | 7.83511 × 10 | 7.853812 × 10 |
5 | −0.0537117 | −0.0532686 | −0.05351 | 4.43118 × 10 | 4.412590 × 10 |
6 | −0.0199294 | −0.0197437 | −0.01982 | 1.85674 × 10 | 1.848193 × 10 |
7 | −0.00735482 | −0.00728336 | −0.00730 | 7.14593 × 10 | 7.11334 × 10 |
8 | −0.00270884 | −0.00268212 | −0.00269 | 2.67196 × 10 | 2.659878 × 10 |
9 | −0.000996952 | −0.000987064 | −0.00099 | 9.888168 × 10 | 9.843626 × 10 |
10 | −0.000366816 | −0.00036317 | −0.00036 | 3.645592 × 10 | 3.629193 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasmin, H.; Alkhezi, Y.; Alhamad, K. A New Iterative Method for Investigating Modified Camassa–Holm and Modified Degasperis–Procesi Equations within Caputo Operator. Symmetry 2023, 15, 2172. https://doi.org/10.3390/sym15122172
Yasmin H, Alkhezi Y, Alhamad K. A New Iterative Method for Investigating Modified Camassa–Holm and Modified Degasperis–Procesi Equations within Caputo Operator. Symmetry. 2023; 15(12):2172. https://doi.org/10.3390/sym15122172
Chicago/Turabian StyleYasmin, Humaira, Yousuf Alkhezi, and Khaled Alhamad. 2023. "A New Iterative Method for Investigating Modified Camassa–Holm and Modified Degasperis–Procesi Equations within Caputo Operator" Symmetry 15, no. 12: 2172. https://doi.org/10.3390/sym15122172
APA StyleYasmin, H., Alkhezi, Y., & Alhamad, K. (2023). A New Iterative Method for Investigating Modified Camassa–Holm and Modified Degasperis–Procesi Equations within Caputo Operator. Symmetry, 15(12), 2172. https://doi.org/10.3390/sym15122172