Singular Behavior of the Dark Universe under the Effect of Thermal Radiation in Curved Spacetime
Abstract
:1. Introduction
- Type I (Big Rip): , , and .
- Type II (“sudden” singularity): , , and , where and is constant. This is a pressure singularity.
- Type III: , , and . This type of singularity is milder than Type I but stronger than Type II.
- Type IV: , , and , but higher derivatives of the Hubble function diverge. This type also includes the case where and/or are finite for .
2. Effect from Thermal Radiation on the Formation of Singularities in the FRW Metric with a Nonzero Spatial Curvature
2.1. Constant Viscosity
2.2. Viscosity Proportional to the Hubble Function
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Masurement of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. The new form of the equation of state for dark energy fluid and accelerating universe. Phys. Lett. B 2006, 639, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Inhomogeneous equation of state of the Universe: Phantom Era, future singularity and crossing the phantom barrier. Phys. Rev. D 2005, 72, 023003. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in (phantom) dark energy universe. Phys. Rev. D 2005, 71, 063004. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Nojiri, S.; Odintsov, S.D. CLassifying and avoiding singularities in the alternative gravity dark energy models. Phys. Rev. D 2009, 79, 124007. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. The Universe future in modified gravity theories: Approaching the the finite-time future singularity. JCAP 2008, 10, 045. [Google Scholar] [CrossRef] [Green Version]
- Brevik, I.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D. Cardy-Verlinde formula in FRW universe with inhomogeneous generalized fluid and dynamical entropy bounds near the future singularity. Eur. Phys. J. C 2010, 69, 563–574. [Google Scholar] [CrossRef]
- Brevik, I.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Viscous Little Rip Cosmology. Phys. Rev. D 2011, 84, 103508. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 2003, 562, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Finite-time future singularities in modified Gauss-Bonnet and F(R,G) gravity and singularity avoidance. Eur. Phys. J. C 2010, 67, 295–310. [Google Scholar] [CrossRef]
- Briscese, F.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Phantom scalar dark energy as modified gravity: Understanding the origin of the Big. Rip singularity. Phys. Lett. B 2007, 646, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.; Oikonomou, V. Dynamical systems perspective of cosmological finite-time singularities in f(R) gravity and interacting multifluid cosmology. Phys. Rev. D 2018, 98, 024013. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Oikonomou, V. Bouncing cosmology with future singularity from modified gravity. Phys. Rev. D 2015, 92, 024016. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Cotsakis, S. Geodesics at sudden singularities. Phys. Rev. D 2013, 88, 067301. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Quantum escape of sudden future singularity. Phys. Lett. B 2004, 595, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. The dark universe future and singularities: The account of thermal and quantum effects. Phys. Dark Univ. 2020, 30, 100695. [Google Scholar] [CrossRef]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D. Thermal effects and scalar modes in the cosmological propagation of gravitational waves. Phys. Dark Universe 2021, 33, 100867. [Google Scholar] [CrossRef]
- Cai, R.G.; Ohta, N. Horizon thermodynamics and gravitational field equations in Horava–Lifshitz Gravity. Phys. Rev. D 2010, 81, 084061. [Google Scholar] [CrossRef] [Green Version]
- Brevik, I.; Timoshkin, A.V.; Paul, T. The effect of thermal radiation on singularities in the dark universe. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150113. [Google Scholar] [CrossRef]
- Planck Collaboration 2019. Planck 2018 Results. I. Overview and the Cosmological Legacy of Planck. Astron. Astrophys. 2020, 641, A1. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Planck evidence for a closed Universe and a possible crisis for cosmology. Nat. Astron. 2020, 4, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Handley, W. Curvature tension: Evidence for a closed universe. Phys. Rev. D 2021, 103, L041301. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Observational constraints on dark energy with generalized equations of state. Phys. Rev. D 2006, 73, 043512. [Google Scholar] [CrossRef] [Green Version]
- Brevik, I.; Gorbunova, O. Dark energy and viscous cosmology. Gen. Relativ. Gravit. 2005, 37, 2039–2045. [Google Scholar] [CrossRef]
- Elizalde, E.; Obukhov, V.V.; Timoshkin, A.V. Inhomogeneous viscous dark fluid coupled with dark matter in the FRW universe. Mod. Phys. Lett. A 2014, 29, 1450132. [Google Scholar] [CrossRef] [Green Version]
- Astashenok, V.; Odintsov, S.D.; Oikonomou, V.K. Dark energy and cosmological horizon thermal effects. Phys. Rev. D 2021, 103, 043514. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brevik, I.; Timoshkin, A.V. Singular Behavior of the Dark Universe under the Effect of Thermal Radiation in Curved Spacetime. Symmetry 2023, 15, 257. https://doi.org/10.3390/sym15020257
Brevik I, Timoshkin AV. Singular Behavior of the Dark Universe under the Effect of Thermal Radiation in Curved Spacetime. Symmetry. 2023; 15(2):257. https://doi.org/10.3390/sym15020257
Chicago/Turabian StyleBrevik, Iver, and Alexander V. Timoshkin. 2023. "Singular Behavior of the Dark Universe under the Effect of Thermal Radiation in Curved Spacetime" Symmetry 15, no. 2: 257. https://doi.org/10.3390/sym15020257
APA StyleBrevik, I., & Timoshkin, A. V. (2023). Singular Behavior of the Dark Universe under the Effect of Thermal Radiation in Curved Spacetime. Symmetry, 15(2), 257. https://doi.org/10.3390/sym15020257