New Estimation of Error in the Hadamard Inequality Pertaining to Coordinated Convex Functions in Quantum Calculus
Abstract
:1. Introduction
2. Basic Literature and Some Recent Advancements in Quantum Math
3. Main Results
3.1. New Multi-Parameter Identity for Twice Partially Quantum Differentiable Functions
3.2. Useful General Quantum Integrals
3.3. New Generalized Error Formulation Concerning Hadamard Type Inequalities and Its Applications
4. Applications to Special Means
5. Discussion and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toth, G. Measures of Symmetry for Convex Sets and Stability; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; London, UK, 2015. [Google Scholar]
- Hermite, C. Sur deux limites d’ une integrale de finie. Mathesis 1883, 3, 82. [Google Scholar]
- Hadamard, J. Etude sur les fonctions entiees et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Dragomir, S.S. On the Hadamard’s inequality for convex function on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E.; Dragomir, S.S. New some Hadamard’s type inequalities for co-ordinated convex functions. Tamsui Oxf. J. Inf. Math. Sci. 2010, 28, 137–152. [Google Scholar]
- Latif, M.A.; Dragomir, S.S. On some new inequalities for differentiable co-ordinated convex functions. J. Inequal. Appl. 2012, 2012, 28. [Google Scholar] [CrossRef] [Green Version]
- Akkurt, A.; Sarikaya, M.Z.; Budak, B.; Yildirim, H. On the Hadamard’s type inequalities for co-ordinated convex functions via fractional integrals. J. King Saud Univ. Sci. 2017, 29, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M. The Hadamards inequality for s-convex function of 2-variables on the coordinates. Int. J. Math. Anal. 2008, 2, 629–638. [Google Scholar]
- Bakula, M.K. An improvement of the Hermite–Hadamard inequality for functions convex on the coordinates. Aust. J. Math. Anal. Appl. 2014, 11, 1–7. [Google Scholar]
- Hsu, K.-C. Some Hermite–Hadamard type inequalities for differentiable Co-ordinated convex functions and applications. Adv. Pure Math. 2014, 4, 326–340. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Inequalities for synchronous functions and Applications. Constr. Math. Anal. 2019, 2, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S.; Bakula, M.K.; Özdemir, M.E.; Pečarić, J. Hadamard-tpye inequalities for s-convex functions. Appl. Math. Comput. 2007, 193, 26–35. [Google Scholar] [CrossRef]
- Nwaeze, E.R. Set Inclusions of the Hermite-Hadamard type for m-polynomial harmonically convex interval valued functions. Constr. Math. Anal. 2021, 4, 260–273. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Latif, M.A.; Akdemir, A.O. On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates. J. Inequal. Appl. 2012, 21, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z. On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transform. Spec. Funct. 2014, 25, 134–147. [Google Scholar] [CrossRef]
- Raees, M.; Anwar, M. On Hermite–Hadamard type inequalities of coordinated convex (p1,h1)-(p2,h2)-convex functions via Katugampola fractional integrals. Filomat 2019, 33, 4785–4802. [Google Scholar] [CrossRef]
- Acar, T. Quantitative q-Voronovskaya and q-Grüss–Voronovskaya-type results for q-Szász operators. Georgian Math. J. 2016, 23, 459–468. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A. On pointwise convergence of q-Bernstein operators and their q-derivatives. Numer. Funct. Anal. Optim. 2015, 36, 287–304. [Google Scholar] [CrossRef]
- Ernst, T. The History of q-Calculus and New Method; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Ho, C.L. On the use of Mellin transform to a class of q-difference-differential equations. Phys. Lett. A 2000, 268, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.H.; Stanton, D. q-Taylor theorems, polynomial expansions, and interpolation of entire functions. J. Approx. Theory 2003, 123, 125–146. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.H.; Zayed, A.I. A q-analogue of the Whittaker–Shannon–Kotélnikov sampling theorem. Proc. Am. Math. Soc. 2003, 131, 3711–3719. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin, Germany, 2001. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. Roy. Soc. Edinb. 1908, 46, 64–72. [Google Scholar] [CrossRef]
- Heine, E. Handbuch der Kugelfunctionen, Theorie und Anwendungen; G. Reimer: Berlin, Germany, 1878; Volume 1. [Google Scholar]
- Jackson, F.H. On generalized functions of Legendre and Bessel. Trans. Roy. Soc. Edinb. 1903, 41, 1–28. [Google Scholar] [CrossRef]
- Jackson, F.H. A basic-sine and cosine with symbolical solutions of certain differential equations. Proc. Edinb. Math. Soc. 1903, 22, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. A generalization of the function Γ(n) and xn. Proc. Roy. Soc. Lond. 1904, 74, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. The applications of basic numbers to Bessel’s and Legendre’s equations (second paper). Proc. Lond. Math. Soc. 1905, 3, 1–23. [Google Scholar] [CrossRef]
- Jackson, F.H. The basic gamma function and elliptic functions. Proc. Roy. Soc. A 1905, 76, 127–144. [Google Scholar]
- Jackson, F.H. A q-form of Taylor’s theorem. Messenger Math. 1909, 38, 62–64. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. The q-integral analogous to Borel’s integral. Messenger Math. 1917, 47, 57–64. [Google Scholar]
- Bromwich, T.J.I.A. An Introduction to the Theory of Infinite Series, 1st ed.; Macmillan: London, UK, 1908. [Google Scholar]
- Agarwal, R. A propos d’une note de M. Pierre Humbert (French). C. R. Acad. Sci. Paris 1953, 236, 2031–2032. [Google Scholar]
- Al-Salam, W. q-analogues of Cauchy’s formulas. Proc. Am. Math. Soc. 1966, 17, 616–621. [Google Scholar]
- Al-Salam, W. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 2, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2012. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Diff. Equ. 2013, 282, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Jhanthanam, S.; Jessada, T.N.; Sotiris, K.; Kamsing, N. On q-Hermite–Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Alqudah1, M.A.; Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Raees, M.; Anwar, M.; Hamed, Y.S. Hermite–Hadamard integral inequalities on coordinated convex functions in quantum calculus. Adv. Diff. Equ. 2021, 2021, 264. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for coordinated convex functions in quantum calculus. Math. Methods Appl. Sci. 2020, 44, 4515–4540. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives. Adv. Differ. Equ. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Budak, H.; Khan, S.; Ali, M.A.; Chu, Y.-M. Refinements of quantum Hermite–Hadamard type inequalities. Open Math. 2021, 19, 724–734. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Du, T.S.; Luo, C.; Yu, B. Certain quantum estimates on the parametrized integral inequalities and their applications. J. Math. Inequal. 2021, 15, 201–228. [Google Scholar] [CrossRef]
- Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.-M. Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Li, Y.-X.; Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. A new generalization of some quantum integral inequalities for quantum differentiable convex functions. Adv. Differ. Equ. 2021, 2021, 225. [Google Scholar] [CrossRef]
- Liu, W.; Zhuang, H. Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
- Raees, M.; Kashuri, A.; Awan, M.U.; Anwar, M. Some new post-quantum integral inequalities involving multi-parameter and their applications. Math. Methods Appl. Sci. 2022, 45, 1–23. [Google Scholar] [CrossRef]
- Raees, M.; Anwar, M.; Vivas-Cortez, M.; Kashuri, A.; Samraiz, M.; Rahman, G. New simpson’s type estimates for two newly defined quantum integrals. Symmetry 2022, 14, 548. [Google Scholar] [CrossRef]
- You, X.; Ali, M.A.; Erden, S.; Budak, H.; Chu, Y.-M. On some new midpoint inequalities for the functions of two variables via quantum calculus. J. Inequal. Appl. 2021, 2021, 142. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogue of Hermite–Hadamard inequality of functions of two variables on finite rectangle in the plane. J. King Saud Univ. Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
- Kunt, M.; Latif, M.A.; İşcan, İ.; Dragomir, S.S. Quantum Hermite–Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
- Alp, N.; Sarikaya, M.Z. Quantum Hermite-Hadamard Type Inequalities For Co-ordinated Convex Functions. Appl. Math. E-Notes 2020, 20, 341–356. [Google Scholar]
Case | L.H.S | R.H.S | L.H.S-R.H.S | ||
---|---|---|---|---|---|
1 | 0.079617 | 0.14512 | |||
2 | 0.014861 | 0.13375 | |||
3 | 0.012924 | 0.11632 | |||
4 | 0.013859 | 0.12473 | |||
5 | 0.013859 | 0.12473 | |||
6 | 1 | 1 | 0.0069444 | 0.0625 |
Case | L.H.S | R.H.S | L.H.S-R.H.S | ||
---|---|---|---|---|---|
1 | 0.0014512 | 0.0025874 | |||
2 | 0.0090703 | 0.018924 | |||
3 | 0.015956 | 0.034949 | |||
4 | 0.004812 | 0.01294 | |||
5 | 0.004812 | 0.01294 | |||
6 | 1 | 1 | 0.027778 | 0.0625 |
Case | L.H.S | R.H.S | L.H.S-R.H.S | ||
---|---|---|---|---|---|
1 | 0.079617 | 1.6907 | |||
2 | 0.014861 | 2.5231 | |||
3 | 0.012924 | 1.3294 | |||
4 | 0.013859 | 1.2689 | |||
5 | 0.013859 | 1.8314 | |||
6 | 1 | 1 | 0.0069444 | 0.86658 |
Case | L.H.S | R.H.S | L.H.S-R.H.S | ||
---|---|---|---|---|---|
1 | 0.00145 | 1.6907 | |||
2 | 0.00907 | 0.03057 | |||
3 | 0.015956 | 0.059823 | |||
4 | 0.004812 | 0.015513 | |||
5 | 0.004812 | 0.015513 | |||
6 | 1 | 1 | 0.027778 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raees, M.; Anwar, M. New Estimation of Error in the Hadamard Inequality Pertaining to Coordinated Convex Functions in Quantum Calculus. Symmetry 2023, 15, 301. https://doi.org/10.3390/sym15020301
Raees M, Anwar M. New Estimation of Error in the Hadamard Inequality Pertaining to Coordinated Convex Functions in Quantum Calculus. Symmetry. 2023; 15(2):301. https://doi.org/10.3390/sym15020301
Chicago/Turabian StyleRaees, Muhammad, and Matloob Anwar. 2023. "New Estimation of Error in the Hadamard Inequality Pertaining to Coordinated Convex Functions in Quantum Calculus" Symmetry 15, no. 2: 301. https://doi.org/10.3390/sym15020301
APA StyleRaees, M., & Anwar, M. (2023). New Estimation of Error in the Hadamard Inequality Pertaining to Coordinated Convex Functions in Quantum Calculus. Symmetry, 15(2), 301. https://doi.org/10.3390/sym15020301