The Genus of a Graph: A Survey
Abstract
:1. Introduction
2. Preliminaries
- Op1.
- , where and ;
- Op2.
- , where and for linear sequences A and B;
- Op3.
- , where and E are linear sequences and .
3. Methods for Determining the Genus of a Graph
- (1)
- D is a diagraph where both the indegree and the outdegree are equal to 2 for any ;
- (2)
- , where each is a closed trails for and where and where and don’t have a common edge for ;
- (3)
- an ordering of the and incident with u for each ;
- (4)
- a function : ;
- (5)
- a function : , where (usually infinite group) is a voltage group and is a voltage assignment.
4. Planarity Criteria and Generalizations
5. Formal Sets
- (1)
- If , then occurs once on , otherwise occurs once for each ;
- (2)
- If , then occurs once on , otherwise occurs once for each
- (1)
- Exchange and for a formal set ;
- (2)
- Exchange and or exchange and for and ;
- (3)
- Replace each by and simultaneously replace each by for and ;
- (4)
- Replace (or ) by Z for , (or ), and (or .
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Graphs with Known Genera
Graph | Reference | |
[50] | ||
[28,55] | ||
[14,35] | ||
[15,56] | ||
[16] | ||
n even | [56] | |
[56] | ||
generates | Stahl [unpublished work] | |
even, | [57] | |
, | [58] | |
[36,58] | ||
n even | [59] | |
n odd | [60] | |
[16] | ||
even | [61] | |
even, | [32] | |
, n even | [32] | |
[32] | ||
(mod 12), | [62] | |
(mod 12), | [63] | |
p prime, (mod 4) | [63] | |
(mod 12) | [33] | |
(mod 6) | ||
(mod 12); | ||
(mod 12), (mod 12) | ||
(mod 4) | [34] | |
(mod 3), | ||
[62,64,65] | ||
[66,67] | ||
[66] | ||
[68,69] | ||
[67] | ||
even | [61] | |
, | [26] | |
[26] | ||
(mod 12) | [70] | |
are even | [26] | |
[71] | ||
[26] | ||
[72] | ||
[27] | ||
[24,25,68] | ||
[73] | ||
, , | , , | [74] |
[75] | ||
[76] | ||
[76] | ||
[57] | ||
, , | [58] | |
; | [77] | |
[77] | ||
, , | , | [58] |
[58] | ||
[78] | ||
[66] | ||
[79] | ||
[79] | ||
[79] | ||
[79] | ||
[79] | ||
[79] | ||
[79] | ||
[79] | ||
[79] | ||
[79] | ||
[80] | ||
[80] |
References
- Heawood, P.J. Map colour theorem. Quart. J. Math. 1890, 24, 332–338. [Google Scholar] [CrossRef]
- Appel, K.; Haken, W. Every planar map is four colourable, Part I: Discharging. J. Ill. Math. 1977, 21, 429–490. [Google Scholar]
- Hilbert, D.; Cohn-Vossen, S. Geometry and the Imagination; Chelsea Publishing Company: New York, NY, USA, 1952. [Google Scholar]
- Ringel, G. Map Color Theorem; Springer: Berlin, Germany, 1974. [Google Scholar]
- Thomassen, C. The graph genus problem is NP-complete. J. Algorithms 1989, 10, 568–576. [Google Scholar] [CrossRef]
- Stahl, S. The embedding of a graph-a survey. J. Graph Theory 1978, 2, 275–298. [Google Scholar]
- Gross, J.L.; Tucker, T.W. Topological Graph Theory; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: New York, NY, USA, 2008. [Google Scholar]
- Edmonds, J. A combinatorial representation for polyhedral surfaces. Not. Am. Math. Soc. 1960, 7, 646. [Google Scholar]
- Youngs, J.W.T. Minimal imbeddings and the genus of a graph. J. Math. Mech. 1963, 12, 303–315. [Google Scholar]
- Dyck, W. Beitrage zur Analysis Situs. Math. Ann. 1888, 32, 457–512. [Google Scholar]
- Heffter, L. Ueber metacyklische Gruppen und Nachbar-configurationen. Math. Ann. 1898, 50, 261–268. [Google Scholar]
- Liu, Y.P. Advances in Combinatorial Maps; Northern Jiaotong Univ. Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Ringel, G. Das Geschlecht des Vollständigen paaren Graphen. Abh. Math. Semin. Univ. Hambg. 1965, 28, 139–150. [Google Scholar] [CrossRef]
- Ringel, G.; Youngs, J.W.T. Das Geschlecht des symmetrischen vollstandigen dreifarbaren Graphen. Comment. Math. Helv. 1970, 45, 152–158. [Google Scholar]
- White, A.T. The Genus of Cartesian Products of Graphs. Ph.D. Thesis, Michigan State University, Michigan, MI, USA, 1969. [Google Scholar]
- Gustin, W. Orientable embedding of Cayley graphs. Bull. Am. Math. Soc. 1963, 69, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Jacques, A. Constellations et Proprietes Algebriques des Graphes Topologiques. Ph.D. Thesis, University of Paris, Paris, France, 1969. [Google Scholar]
- Gross, J.L.; Alpert, S.R. Branched coverings of graph imbeddings. Bull. Am. Math. Soc. 1973, 79, 942–945. [Google Scholar]
- Gross, J.L.; Alpert, S.R. The topological theory of current graphs. J. Comb. Theory Ser. B 1974, 17, 218–233. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.L. Voltage graphs. Discret. Math. 1974, 9, 239–246. [Google Scholar]
- Gross, J.L.; Tucker, T.W. Generating all graph coverings by permutation voltage assignments. Discret. Math. 1977, 18, 273–283. [Google Scholar]
- Ellingham, M.N.; Stephens, C.; Zha, X. The nonorientable genus of complete tripartite graphs. J. Comb. Theory Ser. B 2006, 96, 529–559. [Google Scholar] [CrossRef] [Green Version]
- Beineke, L.W.; Harary, F. The genus of the n-cube. Can. J. Math. 1965, 17, 194–196. [Google Scholar] [CrossRef]
- Ringel, G. Uber drei kombinatorische Probleme am m-dimensionale Wurfel und Wurfelgitter. Abh. Math. Semin. Univ. Hambg. 1955, 20, 10–19. [Google Scholar] [CrossRef]
- White, A.T. The genus of repeated cartesian products of bipartite graphs. Trans. Am. Math. Soc. 1970, 151, 393–404. [Google Scholar] [CrossRef]
- Alpert, S.R. The genera of amalgamations of graphs. Trans. Am. Math. Soc. 1973, 78, 1–39. [Google Scholar] [CrossRef]
- Bouchet, A. Orientable and nonorientable genus of the complete bipartite graph. J. Combin. Theory Ser. B 1978, 24, 24–33. [Google Scholar]
- Magajna, Z.; Mohar, B.; Pisanski, T. Minimal ordered triangulations of surfaces. J. Graph Theory 1986, 10, 451–460. [Google Scholar]
- Mohar, B.; Parsons, T.D.; Pisanski, T. The genus of nearly complete bipartite graphs. Ars Comb. 1985, 20-B, 173–183. [Google Scholar]
- Mohar, B.; Thomassen, C. Graphs on Surfaces, Johns Hopkins Studies in the Mathematical Sciences; Johns Hopkins University Press: Baltimore, MD, USA, 2001. [Google Scholar]
- Kawarabayashi, K.; Tephens, D.C.; Zha, X. Orientable and nonorientable genera for some complete tripartite graphs. SIAM J. Discret. Math. 2004, 18, 479–487. [Google Scholar] [CrossRef]
- Bouchet, A. Triangular imbeddings into surfaces of a join of equicardinal independent sets following an Eulerian graph. In Proceedings of the International Graph Theory Conference; Alavi, Y., Lick, D.R., Eds.; Springer: Berlin, Gemany, 1976; pp. 86–115. [Google Scholar]
- Bouchet, A. Cyclabilité des groupes additifs d’ordre impair. C. R. Acad. Sci. Paris Sér. A-B 1977, 284, A527–A530. [Google Scholar]
- Wan, L.X.; Liu, Y.P.; Wang, D.J. Genus and Nonorientable Genus of Km,n. Science Paper Online. Available online: http://www.paper.edu.cn/releasepaper/content/201212-940 (accessed on 31 December 2012).
- Shao, Z.L.; Liu, Y.P. The genus of a type of graph. Sci. China Math. 2010, 53, 457–464. [Google Scholar]
- Shao, Z.L.; Liu, Y.P.; Li, Z.G. The genus of edge amalgamations of a type of graph. J. Comb. Math. Combin. Comput. 2014, 88, 161–167. [Google Scholar]
- Shao, Z.L.; Liu, Y.P. Genus Embeddings of a Type of Graph. J. Appl. Math. Comput. 2008, 28, 69–77. [Google Scholar] [CrossRef]
- Conder, M.; Stokes, K. New methods for finding minimum genus embeddings of graphs on orientable and non-orientable surfaces. Ars Math. Contemp. 2019, 17, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Brin, M.G.; Squier, C.C. On the genus of Z3 × Z3 × Z3. Eur. J. Comb. 1988, 9, 431–443. [Google Scholar]
- Mohar, B.; Pisanski, T.; Škoviera, M.; White, A. The Cartesian product of three triangles can be embedded into a surface of genus 7. Discret. Math. 1985, 56, 87–89. [Google Scholar]
- Marušič, D.; Pisanski, T.; Wilson, S. The genus of the GRAY graph is 7. Eur. J. Comb. 2005, 26, 377–385. [Google Scholar]
- Archdeacon, D. The medial graph and voltage-current duality. Discret. Math. 1992, 104, 111–141. [Google Scholar] [CrossRef] [Green Version]
- Kuratowski, K. Sur le Problem des Courbes Gauches en Topologie. Fund. Math. 1930, 15, 271–283. [Google Scholar]
- Wagner, K. Über einer Eigenschaft der ebenen Komplexe. Math. Ann. 1937, 114, 570–590. [Google Scholar]
- Whitney, H. Non-separable and planar graphs. Trans. Am. Math. Soc. 1932, 34, 339–362. [Google Scholar]
- MacLane, S. A combinatorial condition for planar graphs. Fund. Math. 1937, 28, 22–32. [Google Scholar]
- MacLane, S. A structural characterization of planar combinatorial graphs. Duke Math. J. 1937, 3, 460–472. [Google Scholar]
- Bodendiek, R.; Wagner, K. Solution to KÜnig’s graph embedding problem. Math. Nachrichten 1989, 140, 251–272. [Google Scholar]
- Robertson, N.; Seymour, P.D. Graph minors. VIII. A Kuratowski theorem for general surfaces. J. Comb. Theory Ser. B 1990, 48, 255–288. [Google Scholar] [CrossRef] [Green Version]
- Vollmerhaus, H. Über die Einbettung von Graphen in zweidimensionale orientierbare Mannigfaltigkeiten kleinsten Geschlechts. In Beiträge zur Graphentheorie; Sachs, H., Voß, H., Walther, H., Eds.; B.G.Teubner Verlagsgesellschaft: Leipzig, Germany, 1968; pp. 163–168. (In Germany) [Google Scholar]
- Gagarin, A.; Myrvold, W.; Chambers, J. The obstructions for toroidal graphs with no K3,3’s. Discret. Math. 2009, 309, 3625–3631. [Google Scholar] [CrossRef] [Green Version]
- Thomassen, C. The genus problem for cubic graphs. J. Comb. Theory Ser. B 1997, 69, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Gavril, F. Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 1973, 3, 261–273. [Google Scholar]
- Gross, J.L. Rieman surfaces and the general utilities problem. In Basic Questions of Design Theory; Spillers, W.R., Ed.; North Holland/American Elsevier: New York, NY, USA, 1974; pp. 383–394. [Google Scholar]
- Stahl, S.; White, A.T. Genus embeddings for some complete tripartite graphs. Discret. Math. 1976, 14, 279–296. [Google Scholar] [CrossRef] [Green Version]
- Craft, D.L. On the genus of joins and compositions of graphs. Discret. Math. 1998, 178, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Craft, D.L. Surgical Techniques for Constructing Minimal Orientable Imbeddings of Joins and Compositions of Graphs. Ph.D. Thesis, Western Michigan University, Kalamazoo, MI, USA, 1991. [Google Scholar]
- Kurauskas, V. On the genus of complete tripartite graph Kn,n,1. Discret. Math. 2017, 324, 508–515. [Google Scholar]
- Lv, S.X.; Chen, Y.C. Constructing a minimum genus embedding of the complete tripartite graph Kn,n,1 for odd n. Discret. Math. 2019, 342, 3017–3024. [Google Scholar]
- Harsfield, N.A.; Ringel, G. Quadrangular embeddings of the complete even k-partite graph. Discret. Math. 1990, 81, 19–23. [Google Scholar]
- Garman, B.L. Cayley Graph Imbeddings and the Associated Block Designs. Ph.D. Thesis, Western Michigan University, Kalamazoo, MI, USA, 1976. [Google Scholar]
- Bénard, L.W.; Bouchet, A. Some cases of triangular imbeddings for Kn(m). J. Comb. Theory Ser. B 1976, 21, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Jungerman, M. The genus of the symmetric quadripartite graph. J. Comb. Theory Ser. B 1975, 19, 181–187. [Google Scholar]
- White, A.T. Graphs of groups on surfaces. In Combinatorial Surveys: Proceedings of the Sixth British Combinatorial Conference; Cameron, C.P.J., Ed.; Academic: London, UK, 1977; pp. 165–197. [Google Scholar]
- Ellingham, M.N.; Schroeder, J.Z. Orientable hamilton cycle embeddings of complete tripartite graphs II: Voltage graph constructions and applications. J. Graph Theory 2014, 77, 219–236. [Google Scholar]
- Jackson, B. Triangular embeddings of K((i-2)n,n,⋯,n). J. Graph Theory 1980, 4, 21–30. [Google Scholar] [CrossRef]
- Alpert, S.R.; Gross, J.L. Components of branched coverings of current graphs. J. Comb. Theory Ser. B 1976, 20, 283–303. [Google Scholar]
- Jungerman, M.; Ringel, G. The genus of the n-octahedron: Regular cases. J. Graph Theory 1978, 2, 69–75. [Google Scholar] [CrossRef]
- Ringel, G. On the genus of Kn × K2 or the n-prism. Discret. Math. 1978, 20, 287–294. [Google Scholar]
- Pisanski, T. Genus of cartesian products of regular bipartite graphs. J. Graph Theory 1980, 4, 31–42. [Google Scholar]
- Alpert, S.R. The genera of edge amalgamations of complete bigraphs. Trans. Am. Math. Soc. 1974, 193, 239–247. [Google Scholar]
- Duke, R.A.; Haggard, G. The genus of subgraphs of K8. Isr. J. Math. 1972, 11, 452–455. [Google Scholar]
- Železnik, V. Quadrilateral embeddings of the conjunction of graphs. Math. Slovaca 1988, 38, 89–98. [Google Scholar]
- Abay-Asmerom, G. On genus imbeddings of the tensor product of graphs. J. Graph Theory 1996, 23, 67–76. [Google Scholar] [CrossRef]
- Abay-Asmerom, G. Imbeddings of the tensor product of graphs where the second factor is a complete graph. Discret. Math. 1998, 182, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.J.; Ren, H. The orientable genus of the join of a cycle and a complete graph. Ars Math. Contemp. 2019, 17, 223–253. [Google Scholar]
- Ellingham, M.N.; Stephens, D.C. The orientable genus of some joins of complete graphs with large edgeless graphs. Discret. Math. 2009, 309, 1190–1198. [Google Scholar]
- Korzhik, V.P. Triangular embeddings of Kn − Km with unboundedly large m. Discret. Math. 1998, 190, 149–162. [Google Scholar]
- Korzhik, V.P. Auxiliary embeddings and constructing triangular embeddings of joins of complete graphs with edgeless graphs. Discret. Math. 2016, 339, 712–720. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L. The Genus of a Graph: A Survey. Symmetry 2023, 15, 322. https://doi.org/10.3390/sym15020322
Wan L. The Genus of a Graph: A Survey. Symmetry. 2023; 15(2):322. https://doi.org/10.3390/sym15020322
Chicago/Turabian StyleWan, Liangxia. 2023. "The Genus of a Graph: A Survey" Symmetry 15, no. 2: 322. https://doi.org/10.3390/sym15020322
APA StyleWan, L. (2023). The Genus of a Graph: A Survey. Symmetry, 15(2), 322. https://doi.org/10.3390/sym15020322