Particle-Laden and Droplet-Laden Two-Phase Flows Past Bodies (a Review)
Abstract
:1. Introduction
2. The Flow of Bodies by Streams with Particles (Drops): The Main Characteristics
2.1. Particle Inertia (Droplets): Dynamic Relaxation Time
2.2. Stokes Numbers
2.3. Reynolds Number
2.4. The Particle Sedimentation Coefficient
3. Features of the Flow of Bodies by Flows with Particles
3.1. Flow around Bodies of Various Shapes
3.2. Features of High-Velocity Flow around Bodies
3.3. Aerodynamic Drag of Bodies in Two-Phase Flow
3.4. Heat Transfer in Two-Phase Flow
3.5. Erosive Destruction
3.6. Cold Gas-Dynamic Spraying
3.7. Glowing
4. Peculiarities of Streamline Flowing of Bodies with Droplets
4.1. Filtration
4.2. Icing
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varaksin, A.Y.; Ryzhkov, S.V. Turbulence in Two-Phase Flows with Macro-, Micro- and Nanoparticles: A Review. Symmetry 2022, 14, 2433. [Google Scholar] [CrossRef]
- Elghobashi, S. Particle-Laden Turbulent Flows: Direct Simulation and Closure Models. Appl. Sci. Res. 1991, 48, 301–314. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Zaichik, L.I. The Effect of a Fine Divided Impurity on the Turbulence Intensity of a Carrier Flow in a Pipe. High Temp. 1998, 36, 983–986. [Google Scholar]
- Zaichik, L.I.; Varaksin, A.Y. Effect of the Wake behind Large Particles on the Turbulence Intensity of Carrier Flow. High Temp. 1999, 37, 655–658. [Google Scholar]
- Pakhomov, M.A.; Protasov, M.V.; Terekhov, V.I.; Varaksin, A.Y. Experimental and Numerical Investigation of Downward Gas-Dispersed Turbulent Pipe Flow. Int. J. Heat Mass Transf. 2007, 50, 2107–2116. [Google Scholar] [CrossRef]
- Osiptsov, A.N. Structure of the Laminar Boundary Layer of a Disperse Medium on a Flat Plate. Fluid Dyn. 1980, 15, 512–517. [Google Scholar] [CrossRef]
- Osiptsov, A.N. Investigation of Regions of Unbounded Growth of the Particle Concentration in Disperse Flows. Fluid Dyn. 1984, 19, 378–385. [Google Scholar] [CrossRef]
- Osiptsov, A.N. Motion of a Dusty Gas at the Entrance to a Flat Channel and a Circular Pipe. Fluid Dyn. 1988, 23, 867–874. [Google Scholar] [CrossRef]
- Naumov, V.A. Calculation of the Laminar Boundary Layer on a Plate with Allowance for the Lifting Forces Acting on a Dispersed Mixture. Fluid Dyn. 1988, 23, 943–945. [Google Scholar] [CrossRef]
- Pakhomov, M.A.; Terekhov, V.I. The Effect of Drop Evaporation on Gas Turbulence and Heat Transfer for Two-Phase Flow Behind Sudden Pipe Expansion. High Temp. 2016, 54, 330–337. [Google Scholar] [CrossRef]
- Pakhomov, M.A.; Terekhov, V.I. Structure of the Nonisothermal Swirling Gas-Droplet Flow Behind an Abrupt Tube Expansion. Fluid Dyn. 2016, 51, 70–80. [Google Scholar] [CrossRef]
- Pakhomov, M.A.; Terekhov, V.I. Effect of Flow Swirling on Heat Transfer in Gas-Droplet Flow Downstream of Abrupt Pipe Expansion. High Temp. 2018, 56, 410–417. [Google Scholar] [CrossRef]
- Pakhomov, M.A.; Terekhov, V.I. Particle Concentration Distribution in a Gas-Droplet Confined Swirling Flow: Euler and Lagrange Approaches. High Temp. 2020, 58, 835–838. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Ryzhkov, S.V. Vortex Flows with Particles and Droplets (A Review). Symmetry 2022, 14, 2016. [Google Scholar] [CrossRef]
- Michael, D.H.; Norey, P.W. Particle Collision Efficiencies for a Sphere. J. Fluid Mech. 1969, 17, 565–575. [Google Scholar] [CrossRef]
- Tsirkunov, Y.M. Influence of the Viscous Boundary Layer on the Deposition of Particles from a Gas Suspension Flowing Past a Sphere. Fluid Dyn. 1982, 17, 48–55. [Google Scholar] [CrossRef]
- Morsi, S.A.; Alexander, A.J. An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Tsirkunov, Y.M. Gas–Particle Flows around Bodies—Key Problems, Modeling and Numerical Analysis. In Proceedings of the Proc. Fourth International Conference on Multiphase Flow (ICMF’01), New Orleans, LA, USA, 27 May–1 June 2001. [Google Scholar]
- Varaksin, A.Y.; Ivanov, T.F. Investigation of the Behavior of Reflected Particles Under Conditions of Heterogeneous Flow Past Blunt Bodies. High Temp. 2003, 41, 62–67. [Google Scholar] [CrossRef]
- Ivanov, T.F.; Varaksin, A.Y. Investigation of the Behavior of Reflected Particles under Conditions of Heterogeneous Flow Past a Blunt Body: Experiment and Calculation. High Temp. 2005, 43, 310–313. [Google Scholar] [CrossRef]
- Vittal, B.V.R.; Tabakoff, W. Two-Phase Flow Around a Two-Dimensional Cylinder. AIAA J. 1987, 25, 648–654. [Google Scholar] [CrossRef]
- Spokoinyi, F.E.; Gorbis, Z.R. Properties of Precipitation of Finely Dispersed Particles from a Cooled Gas-Flow Transverse to a Heat-Exchanging Surface. High Temp. 1981, 19, 142–158. [Google Scholar]
- Tsirkunov, Y.M.; Tarasova, N.V. Influence of the Temperature of an Obstacle on the Precipitation of a Finely-Dispersed Impurity from Supersonic Flow of a Gas Suspension. High Temp. 1992, 30, 955–962. [Google Scholar]
- Luo, K.; Fan, J.; Li, W.; Cen, K. Transient, Three-Dimensional Simulation of Particle Dispersion in Flows Around a Circular Cylinder (Re=140-260). Fuel 2009, 88, 1294–1301. [Google Scholar] [CrossRef]
- Haugen, N.E.L.; Cragset, S. Particle Impaction on a Cylinder in a Crossflow as Function of Stokes and Reynolds Numbers. J. Fluid Mech. 2010, 661, 239–261. [Google Scholar] [CrossRef]
- Aarnes, J.R.; Haugen, N.E.L.; Andersson, H.I. Inertial Particle Impaction on a Cylinder in Turbulent Cross-Flow at Modest Reynolds Numbers. Int. J. Multiph. Flow 2019, 111, 53–61. [Google Scholar] [CrossRef]
- Yoshimoto, H.; Goto, S. Self-Similar Clustering if Inertial Particles in Homogeneous Turbulence. J. Fluid Mech. 2007, 577, 275–286. [Google Scholar] [CrossRef]
- Weber, R.; Schaffel-Mancini, N.; Mancini, M.; Kupka, T. Fly Ash Deposition Modelling: Requirements for Accurate Prediction of Particle Impaction on Tubes Using RANS-Based Computational Fluid Dynamics. Fuel 2013, 108, 586–596. [Google Scholar] [CrossRef]
- Mitra, D.; Haugen, N.E.L.; Rogachevskii, I. Turbophoresis in Forced Inhomogeneous Turbulence. Eur. Phys. J. Plus 2018, 133, 35–42. [Google Scholar] [CrossRef]
- Dombrovskii, L.A.; Yukina, E.P. Critical Conditions of Inertial Particle Deposition from a Gas-Flow Near Retardation Point. High Temp. 1983, 21, 402–408. [Google Scholar]
- Dombrovskii, L.A.; Yukina, E.P. Critical Conditions for the Inertial Precipitation of Particles from Aerocolloidal Flow in the Vicinity of a Stagnation Point—Influence of Blowing. High Temp. 1984, 22, 587–591. [Google Scholar]
- Dombrovskii, L.A. Inertial Deposition of Particles from Gas-Disperse Flow in the Vicinity of a Stagnation Point. High Temp. 1986, 24, 429–434. [Google Scholar]
- Sukhorukov, A.L. Numerical Simulation of a Transonic Two-Phase Gas Flow Past a Lattice of Airfoils. Vestn. Molod. Uch. Ser. Prikl. Mat. Mech. 2002, 1, 98–104. (In Russian) [Google Scholar]
- Carrier, G.F. Shock Waves in a Dusty Gas. J. Fluid Mech. 1958, 4, 376–382. [Google Scholar] [CrossRef]
- Kriebel, A.R. Analysis of Normal Shock Waves in a Particle Laden Gas. J. Basic Eng. Trans. ASME 1964, 86, 655–665. [Google Scholar] [CrossRef]
- Rudinger, G. Some Properties of Shock Relaxation in Gas Flow Carrying Small Particles. Phys. Fluids 1964, 7, 658–663. [Google Scholar] [CrossRef]
- Igra, O.; Ben-Dor, G. Parameters Affecting the Relaxation Zone Behind Normal Shock Waves in Dusty Gases. Isr. J. Technol. 1980, 18, 159–168. [Google Scholar]
- Ben-Dor, G.; Mond, M.; Igra, O.; Martsiano, Y.A. Nondimensional Analysis of Dusty Shock Waves in Steady Flows. KSME J. 1988, 2, 28–34. [Google Scholar] [CrossRef]
- Igra, O.; Ben-Dor, G. Dusty Shock Waves. Appl. Mech. Rev. 1988, 41, 379–437. [Google Scholar] [CrossRef]
- Ben-Dor, G. Dusty Shock Waves—An Update. Appl. Mech. Rev. 1996, 49, 141–146. [Google Scholar] [CrossRef]
- Davydov, Y.M.; Nigmatulin, R.I. Analysis of Outer Heterogeneous Flow of a Gas Containing Droplets or Particles Past Blunt Bodies. Dokl. Akad. Nauk SSSR 1981, 259, 57–60. (In Russian) [Google Scholar]
- Davydov, Y.M.; Enikeev, I.K.; Nigmatulin, R.I. Calculation of the Flow of a Gas with Particles Past Bluff Bodies with Allowance for the Effect of Reflected Particles on the Flow of the Aerosol. J. Appl. Mech. Tech. Phys. 1990, 31, 860–867. [Google Scholar] [CrossRef]
- Volkov, A.N.; Tsirkunov, Y.M.; Oesterle, B. Numerical Simulation of a Supersonic Gas-Solid Flow over a Blunt Body: The Role of Inter-Particle Collisions and Two-Way Coupling Effects. Int. J. Multiph. Flow 2005, 31, 1244–1275. [Google Scholar] [CrossRef]
- Molleson, G.V.; Stasenko, A.L. The Interaction Between Gas-Dynamically Accelerated Particles and a Body Subjected to Flow. High Temp. 2009, 47, 680–691. [Google Scholar] [CrossRef]
- Molleson, G.V.; Stasenko, A.L. Peculiarities of Flow Over a Blunted Body by a Supersonic Polydispersed Jet with a Swirl of Reflected Particles. High Temp. 2011, 49, 72–80. [Google Scholar] [CrossRef]
- Molleson, G.V.; Stasenko, A.L. Interaction of a Two-Phase Jet with Solid Body with Generation of a “Chaos” of Particles. High Temp. 2013, 51, 537–550. [Google Scholar] [CrossRef]
- Mikhatulin, D.S.; Polezhaev, Y.V.; Reviznikov, D.L. Heat Transfer and Destruction of Bodies in Supersonic Heterogeneous Flow; Yanus-K: Moscow, Russia, 2007; 392p. (In Russian) [Google Scholar]
- Vasilevskii, E.B.; Yakovleva, L.V. The Tangential Gas Blowing into a High-Temperature High-Speed Dusted Flow. Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo 2011, 4, 2053–2054. (In Russian) [Google Scholar]
- Varaksin, A.Y.; Protasov, M.V. The Effect of Gas Injection on the Protection of Body Surfaces Streamlined by a Two-Phase Flow. High Temp. 2017, 55, 945–948. [Google Scholar] [CrossRef]
- Ginevskii, A.S. Theory of Turbulent Jets and Traces; Mashinostroenie: Moscow, Russia, 1969; 400p. (In Russian) [Google Scholar]
- Balanin, B.A.; Zlobin, V.V. Experimental Investigation of the Drag of Simple Bodies in a Two-Phase Flow. Fluid Dyn. 1979, 14, 456–458. [Google Scholar] [CrossRef]
- Balanin, B.A. Influence of Reflected Particles on the Ablation of a Body in Two-Phase Flow. Fluid Dyn. 1984, 19, 841–845. [Google Scholar] [CrossRef]
- Balanin, B.A.; Lashkov, V.A. Drag of a Flat Wedge in a Two-Phase Flow. Fluid Dyn. 1982, 17, 317–321. [Google Scholar] [CrossRef]
- Sukomel, A.S.; Tsvetkov, F.F.; Kerimov, R.V. Heat Transfer and Hydraulic Resistance in the Motion of Gas Suspension in Pipes; Energiya: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Boothroyd, R.G. Flowing Gas-Solids Suspensions; Chapman and Hall: London, UK, 1971. [Google Scholar]
- Dunbar, L.E.; Courtney, J.P.; McMillen, L.D. Heating Augmentation in Erosion Hypersonic Environments. AIAA J. 1975, 13, 908–912. [Google Scholar] [CrossRef]
- Polezhaev, Y.V.; Repin, I.V.; Mikhatulin, D.S. Heat Transfer in a Heterogeneous Supersonic. High Temp. 1992, 30, 949–954. [Google Scholar]
- Molleson, G.V.; Stasenko, A.L. Kinetic-Thermal Effect of Gas-Dispersed Supersound Jet on an Axisymmetric Body. High Temp. 2014, 452, 881–889. [Google Scholar] [CrossRef]
- Molleson, G.V.; Stasenko, A.L. Gas-Dispersed Jet Flow Around a Solid in a Wide Range of Stagnation Parameters. High Temp. 2017, 55, 87–94. [Google Scholar] [CrossRef]
- Molleson, G.V.; Stasenko, A.L. Gasdynamic Acceleration of Microparticles and Their Interaction with a Solid Body. High Temp. 2017, 55, 906–913. [Google Scholar] [CrossRef]
- Perelman, R.G.; Pryakhin, V.V. Erosion of Elements of Steam Turbines; Energoatomizdat: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Preece, C.M. (Ed.) Treatise on Materials Science and Technology; Academic: New York, NY, USA, 1979; Volume 16. [Google Scholar]
- Springer, G.S. Erosion by Liquid Impact; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Mikhatulin, D.S.; Polezhaev, Y.V.; Reviznikov, D.L. Investigation of Failure of Carbon Heat-Shielding Material Under Conditions of Flight in Dusty Atmosphere. High Temp. 2003, 41, 88–94. [Google Scholar] [CrossRef]
- Shumeiko, A.I.; Telekh, V.D.; Ryzhkov, S.V. Probe Diagnostics and Optical Emission Spectroscopy of Wave Plasma Source Exhaust. Symmetry 2022, 14, 1983. [Google Scholar] [CrossRef]
- Rudinskii, A.V.; Yagodnikov, D.A.; Ryzhkov, S.V.; Onufriev, V.V. Features of Intrinsic Electric Field Formation in Low-Temperature Oxygen–Methane Plasma. Tech. Phys. Lett. 2021, 47, 520–523. [Google Scholar] [CrossRef]
- Polezhaev, Y.V. Stabilization of the Erosion Process Affecting the Material of a Barrier Under Repetitive Impact by Particles. J. Eng. Phys. 1979, 37, 1007–1011. [Google Scholar] [CrossRef]
- Hooker, W.Y.; Watson, R.; Morsell, A.L. Measurements with Powdered Solids in Shock Tubes. Phys. Fluids 1969, 12, 1169–1172. [Google Scholar] [CrossRef]
- Trunev, A.P.; Fomin, V.M. Erosion of a Blunt Body in a Dusty Hypersonic Stream. J. Appl. Mech. Tech. Phys. 1984, 25, 591–597. [Google Scholar] [CrossRef]
- Shebeko, V.N. Screening of a Surface by Reflected Particles. J. Eng. Phys. 1986, 51, 1062–1068. [Google Scholar] [CrossRef]
- Pankratov, B.M.; Polezhaev, Y.V.; Rudko, A.K. Interaction of Materials with Gas Flows; Mashinostroenie: Moscow, Russia, 1976; 224p. (In Russian) [Google Scholar]
- Sheldon, G.L. Similarities and Differences in the Erosion Behavior of Materials. Trans. ASME J. Basic Eng. 1970, 92, 619–626. [Google Scholar] [CrossRef]
- Rickerby, D.G.; McMillan, N.H. The Erosion of Aluminum by Solid Particles Impingement at Oblique Incident. Wear 1982, 79, 171–190. [Google Scholar] [CrossRef]
- Rickerby, D.G.; McMillan, N.H. Mechanism of Solid Particles Erosion in Crystalline Materials. Wear 1980, 60, 369–382. [Google Scholar] [CrossRef]
- Kleis, I. On the Wear of Metals in the Abrasive Jet. Tr. Tallin. Politekh. Inst. Ser. A 1959, 163, 3. (In Russian) [Google Scholar]
- Suur, U.K. On the Effect of Temperature on the Wear Mechanism of Metals in an Abrasive Jet. Tr. Tallin. Politekh. Inst. Ser. A 1966, 237, 63–88. (In Russian) [Google Scholar]
- Young, J.P.; Ruff, A.W. Particle Erosion Measurements on Metals. J. Eng. Mater. Technol. 1977, 99, 121–125. [Google Scholar] [CrossRef]
- Ives, L.K. Erosion of 310 Stainless Steel at 975 °C in Combustion Gas Atmosphere. J. Eng. Mater. Technol. 1977, 99, 126–132. [Google Scholar] [CrossRef]
- Wakeman, T.; Tabakoff, W. Erosion Behavior in a Simulated Jet Engine Environments. J. Aircr. 1979, 16, 828–833. [Google Scholar] [CrossRef]
- Gat, N.; Tabakoff, W. Some Effects of Temperature on the Erosion of Metals. Wear 1978, 50, 85–94. [Google Scholar] [CrossRef]
- Tabakoff, W.; Greut, G. An Experimental Investigation of Certain Aerodynamic Effects on Erosion. In Proceedings of the 8th Aerodynamic Testing Conference, Bethesda, MD, USA, 8–10 July 1974. [Google Scholar]
- Swain, C.E. The Effects of Particle/Shock Laden Interaction on Reentry Vehicle Performance. In Proceedings of the 10th Thermophysics Conference, Denver, CO, USA, 27–29 May 1975. [Google Scholar]
- Polezhaev, Y.V.; Panchenko, V.I. Fundamental Relations of Erosion Kinetics. J. Eng. Phys. 1988, 52, 507–512. [Google Scholar] [CrossRef]
- Guo, Y.; Koga, G.Y.; Moreira, J.A.; Savoie, S.; Schulz, R.; Kiminami, C.S.; Bolfarini, C.; Botta, W.J. Microstructural Investigation of Fe-Cr-Nb-B Amorphous/Nanocrystalline Coating Produced by HVOF. Mater. Des. 2016, 111, 608–615. [Google Scholar]
- Alkhimov, A.P.; Kosarev, V.F.; Papyrin, A.N. A Method of Cold Gas-Dynamic Deposition. Sov. Phys.—Dokl. 1990, 35, 1047–1049. [Google Scholar]
- Alkhimov, A.P.; Klinkov, S.V.; Kosarev, V.F. Experimental Study of Deformation and Attachment of Microparticles to an Obstacle Upon High-Rate Impact. J. Appl. Mech. Tech. Phys. 2000, 41, 245–250. [Google Scholar] [CrossRef]
- Alkhimov, A.P.; Kosarev, V.F.; Klinkov, S.V. The Features of Cold Spray Nozzle Design. J. Therm. Spray Technol. 2001, 10, 375–381. [Google Scholar] [CrossRef]
- Alkhimov, A.P.; Klinkov, S.V.; Kosarev, V.F.; Fomin, V.M. Cold Gasdynamic Sputtering: Theory and Practice; Fizmatlit: Moscow, Russia, 2010; 536p. (In Russian) [Google Scholar]
- Vasilevskij, E.B.; Osiptsov, A.N.; Chirikhin, A.V.; Yakovleva, L.V. Heat Exchange on the Front Surface of a Blunt Body in a High-Speed Flow Containing Low-Inertia Particles. J. Eng. Phys. Thermophys. 2001, 74, 1399–1411. [Google Scholar] [CrossRef]
- Molleson, G.V.; Stasenko, A.L. Gas Thermodynamics and Optics of a Monodisperse Supersonic Jet Interacting with an Aerodynamic Body. High Temp. 2012, 50, 755–764. [Google Scholar] [CrossRef]
- Molleson, G.V.; Stasenko, A.L. Electro-Optical Phenomena in a Gas-Dispersed Jet Flow Around a Solid Body. High Temp. 2015, 53, 855–864. [Google Scholar] [CrossRef]
- Dalgamoni, H.N.; Yong, X. Numerical and Theoretical Modeling of Droplet Impact on Spherical Surfaces. Phys. Fluids 2021, 33, 052112. [Google Scholar] [CrossRef]
- Sahoo, P.C.; Senapati, J.R.; Rana, B.K. Numerical Observation and Analytical Formulation of Droplet Impact and Spreading Around the Thin Vertical Cylinder. Phys. Fluids 2022, 34, 042114. [Google Scholar] [CrossRef]
- Yoon, I.; Shin, S. Maximal Spreading of Droplet During Collision on Particle: Effects of Liquid Viscosity and Surface Curvature. Phys. Fluids 2021, 33, 083310. [Google Scholar] [CrossRef]
- Luo, J.; Chu, F.; Ni, Z.; Zhang, J.; Wen, D. Dynamics of Droplet Impacting on a Cone. Phys. Fluids 2021, 33, 112116. [Google Scholar] [CrossRef]
- Ding, S.; Liu, X.; Wu, X.; Zhang, X. Droplet Breakup and Rebound During Impact on Small Cylindrical Superhydrophobic Targets. Phys. Fluids 2020, 32, 102106. [Google Scholar] [CrossRef]
- Yarin, A.L. Droplet Impact Dynamics: Splashing, Spreading, Receding, Bouncing…. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Josserand, C.; Thoroddsen, S.T. Drop Impact on a Solid Surface. Annu. Rev. Fluid Mech. 2016, 48, 365–391. [Google Scholar] [CrossRef] [Green Version]
- Dalgamoni, H.N.; Yong, X. Axisymmetric Lattice Boltzmann Simulation of Droplet Impact on Solid Surfaces. Phys. Rev. E 2018, 98, 13102. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Vasil’ev, N.V.; Vavilov, S.N. The Mechanism of Droplet Levitation in Gas-Droplet Flows Past Bodies. Dokl. Phys. 2021, 66, 345–347. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Vasil’ev, N.V.; Vavilov, S.N.; Khodakov, K.A. On Some Features of the Gravitational Deposition of Drops on a Model with a Hemispherical End. High Temp. 2022, 60, S70–S76. [Google Scholar]
- Wessel, R.A.; Righi, J. Generalized Correlations for Inertial Impaction of Particles on a Circular Cylinder. Aerosol Sci. Technol. 1988, 9, 9–60. [Google Scholar] [CrossRef]
- Pulley, R.A.; Walters, J.K. The Effect of Interception on Particle Collection by Spheres and Cylinders. J. Aerosol Sci. 1990, 21, 733–743. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; Wiley & Sons: Hoboken, NJ, USA, 1999; 504p. [Google Scholar]
- Regalado, C.M.; Ritter, A. The Design of an Optimal Fog Water Collector: A Theoretical Analysis. Atmos. Res. 2016, 178–179, 45–54. [Google Scholar] [CrossRef]
- Ratnam, J.J.; Cheng, W.; Kurtyigit, I.E.; DeMauro, E.P.; Drazer, G. The Effect of Neighbors on the Effective Inertial Collision Efficiency of Cylindrical Collectors. J. Aerosol Sci. 2022, 16, 105910. [Google Scholar] [CrossRef]
- Advisory Group for Aerospace Research and Development. Ice Accretion Simulation; AGARD-AR-344; Canada Communication Group Inc.: Ottawa, ON, Canada, 1997; 280p. [Google Scholar]
- Aircraft Icing Handbook; Civil Aviation Authority: Wellington, New Zeland, 2000; 97p.
- Fortin, G.; Ilinca, A.; Laforte, J.-L.; Brandi, V. A New Roughness Computation Method and Geometric Accretion Model for Airfoil Acing. J. Aircr. 2004, 41, 119–127. [Google Scholar] [CrossRef]
- Alekseenko, S.V.; Prihod’ko, A.A. Numerical Simulation of Cylinder and Profile Icing. Review of Models and Results of Calculations. Uch. Zap. TsAGI 2013, 44, 25–57. (In Russian) [Google Scholar]
- Amelyushkin, I.A.; Grinats, E.S.; Stasenko, A.L. Kinetics of Molecular Clusters and Hydrothermodynamics of Drops in the Problem of Aircraft Icing. Vest. Mosk. Gos. Obl. Univ. Ser. Fiz.-Mat. 2012, 2, 152–161. (In Russian) [Google Scholar]
- Grinats, E.S.; Miller, A.B.; Potapov, Y.F.; Stasenko, A.L. Experimental and Theoretical Studies of Icing Processes of Nanomodified Superhydrophobic and Conventional Surfaces. Vest. Mosk. Gos. Obl. Univ. Ser. Fiz.-Mat. 2013, 3, 84–92. (In Russian) [Google Scholar]
- Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. The Adaptive Composite Block-Structured Grid Calculation of the Gas-Dynamic Characteristics of an Aircraft Moving in a Gas Environment. Mathematics 2022, 10, 2130. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Approximate calculation of convective heat transfer near hypersonic aircraft surface. J. Enhanc. Heat Transf. 2018, 25, 181–193. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Numerical Simulation of Pulsed Jets of a High-Current Pulsed Surface Discharge. Comput. Therm. Sci. 2021, 13, 45–56. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Approximate method for calculating convective heat flux on the surface of bodies of simple geometric shapes. J. Phys. Conf. Ser. 2017, 815, 012024. [Google Scholar] [CrossRef]
- Ryzhkov, S.V.; Kuzenov, V.V. New realization method for calculating convective heat transfer near the hypersonic aircraft surface. Z. Angew. Math. Phys. 2019, 70, 46. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. Calculation of heat transfer and drag coefficients for aircraft geometric models. Appl. Sci. 2022, 12, 11011. [Google Scholar] [CrossRef]
- Ryzhkov, S.V.; Kuzenov, V.V. Analysis of the ideal gas flow over body of basic geometrical shape. Int. J. Heat Mass Transf. 2019, 132, 587–592. [Google Scholar] [CrossRef]
- Kashevarov, A.V.; Stasenko, A.L. Evolution of the Water Film and Run-Back Ice on the Surface of a Body on Plane Airflow. Thermophys. Aeromech. 2019, 26, 223–230. [Google Scholar] [CrossRef]
- Amelyushkin, I.A.; Stasenko, A.L. Simulation of the Interaction of Ice Crystals with the Surface of a Flying Vehicle. J. Eng. Phys. Thermophys. 2020, 93, 576–584. [Google Scholar] [CrossRef]
- Kashevarov, A.V.; Stasenko, A.L. Discrete-Drop Mode of Ice Accretion on a Cylinder in Transverse Supercooled Flow. Tech. Phys. 2020, 65, 41–47. [Google Scholar] [CrossRef]
- Kashevarov, A.V.; Miller, A.B.; Potapov, Y.F.; Stasenko, A.L. Effect of the Ice Crystals on Run-Back Ice Evolution on a Wing Model. Thermophys. Aeromech. 2021, 28, 21–28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varaksin, A.Y.; Ryzhkov, S.V. Particle-Laden and Droplet-Laden Two-Phase Flows Past Bodies (a Review). Symmetry 2023, 15, 388. https://doi.org/10.3390/sym15020388
Varaksin AY, Ryzhkov SV. Particle-Laden and Droplet-Laden Two-Phase Flows Past Bodies (a Review). Symmetry. 2023; 15(2):388. https://doi.org/10.3390/sym15020388
Chicago/Turabian StyleVaraksin, Aleksey Yu., and Sergei V. Ryzhkov. 2023. "Particle-Laden and Droplet-Laden Two-Phase Flows Past Bodies (a Review)" Symmetry 15, no. 2: 388. https://doi.org/10.3390/sym15020388
APA StyleVaraksin, A. Y., & Ryzhkov, S. V. (2023). Particle-Laden and Droplet-Laden Two-Phase Flows Past Bodies (a Review). Symmetry, 15(2), 388. https://doi.org/10.3390/sym15020388