Dilepton Program with Time-of-Flight Detector at the STAR Experiment
Abstract
:1. Introduction
2. Time-of-Flight Detector
3. Thermal Dileptons
4. Dileptons from the Breit–Wheeler Process
5. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bazavov, A.; Ding, H.T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Karthik, N.; Laermann, E.; Lahiri, A.; Larsen, R.; Li, S.T.; et al. Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 2019, 795, 15–21. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Guenther, J.N.; Kara, R.; Katz, S.D.; Parotto, P.; Pasztor, A.; Ratti, C.; Szabo, K.K. QCD Crossover at Finite Chemical Potential from Lattice Simulations. Phys. Rev. Lett. 2020, 125, 052001. [Google Scholar] [CrossRef] [PubMed]
- Braun-Munzinger, P.; Koch, V.; Schäfer, T.; Stachel, J. Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rept. 2016, 621, 76–126. [Google Scholar] [CrossRef]
- Busza, W.; Rajagopal, K.; van der Schee, W. Heavy Ion Collisions: The Big Picture, and the Big Questions. Ann. Rev. Nucl. Part. Sci. 2018, 68, 339–376. [Google Scholar] [CrossRef]
- Shuryak, E.V. Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Psions. Phys. Lett. B 1978, 78, 150. [Google Scholar] [CrossRef]
- McLerran, L.D.; Toimela, T. Photon and Dilepton Emission from the Quark - Gluon Plasma: Some General Considerations. Phys. Rev. D 1985, 31, 545. [Google Scholar] [CrossRef] [PubMed]
- Shuryak, E.V.; Xiong, L. Dilepton and photon production in the ‘hot glue’ scenario. Phys. Rev. Lett. 1993, 70, 2241–2244. [Google Scholar] [CrossRef]
- Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J.C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; et al. Probing dense baryon-rich matter with virtual photons. Nat. Phys. 2019, 15, 1040–1045. [Google Scholar] [CrossRef]
- van Hees, H.; Rapp, R. Comprehensive interpretation of thermal dileptons at the SPS. Phys. Rev. Lett. 2006, 97, 102301. [Google Scholar] [CrossRef]
- Rapp, R.; van Hees, H. Thermal Dileptons as Fireball Thermometer and Chronometer. Phys. Lett. B 2016, 753, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Heinz, U.W.; Paquet, J.F.; Gale, C. Thermal photons as a quark-gluon plasma thermometer reexamined. Phys. Rev. C 2014, 89, 044910. [Google Scholar] [CrossRef]
- Toll, J.S. The Dispersion Relation for Light and Its Application to Problems Involving Electron Pairs. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1952. [Google Scholar]
- Williams, E.J. Nature of the High Energy Particles of Penetrating Radiation and Status of Ionization and Radiation Formulae. Phys. Rev. 1934, 45, 729–730. [Google Scholar] [CrossRef]
- Eichler, J. Theory of relativistic ion-atom collisions. Phys. Rep. 1990, 193, 165–277. [Google Scholar] [CrossRef]
- Baur, G. Multiple electron-positron pair production in relativistic heavy-ion collisions: A strong-field effect. Phys. Rev. A 1990, 42, 5736–5738. [Google Scholar] [CrossRef]
- Baltz, A.J.; Gelis, F.; McLerran, L.; Peshier, A. Coulomb corrections to e+e− production in ultra-relativistic nuclear collisions. Nucl. Phys. A 2001, 695, 395–429. [Google Scholar] [CrossRef]
- Belkacem, A.; Gould, H.; Feinberg, B.; Bossingham, R.; Meyerhof, W.E. Capture, ionization, and pair-production processes in relativistic heavy-ion collisions in the 1-GeV/nucleon energy range. Phys. Rev. A 1997, 56, 2806–2818. [Google Scholar] [CrossRef]
- Belkacem, A.; Claytor, N.; Dinneen, T.; Feinberg, B.; Gould, H. Electron capture from pair production by Au79+ at 10.8 GeV/nucleon. Phys. Rev. A 1998, 58, 1253–1255. [Google Scholar] [CrossRef]
- Vane, C.R.; Datz, S.; Dittner, P.F.; Krause, H.F.; Bottcher, C.; Strayer, M.; Schuch, R.; Gao, H.; Hutton, R. Electron-positron pair production in Coulomb collisions of ultrarelativistic sulfur ions with fixed targets. Phys. Rev. Lett. 1992, 69, 1911–1914. [Google Scholar] [CrossRef]
- Arsene, I.; Bearden, I.G.; Beavis, D.; Besliu, C.; Budick, B.; Bøggild, H.; Chasman, C.; Christensen, C.H.; Christiansen, P.; Cibor, J.; et al. Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27. [Google Scholar] [CrossRef]
- Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Becker, B.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28–101. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; et al. Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183. [Google Scholar] [CrossRef]
- Adcox, K.; Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Al-Jamel, A.; Alexer, J.; Amirikas, R.; Aoki, K.; et al. Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 2005, 757, 184–283. [Google Scholar] [CrossRef]
- Fatyga, M.; Rhoades-Brown, M.; Tannenbaum, M. Can RHIC Be Used to Test QED? Technical Report; Brookhaven National Lab.: Upton, NY, USA, 1990. [Google Scholar]
- Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; et al. Production of e+e− pairs accompanied by nuclear dissociation in ultraperipheral heavy-ion collisions. Phys. Rev. C 2004, 70, 031902. [Google Scholar] [CrossRef]
- Drachenberg, J.L.; Hagiwara, M.N.; Isenhower, D.; Isenhower, L.; Omiwade, O.O.; Smith, W.C.; Towell, R.S.; Singh, C.P.; Singh, V.; Tuli, S.K.; et al. Photoproduction of J/ψ and of high mass e+e− in ultra-peripheral Au+Au collisions at = 200 GeV. Phys. Lett. B 2009, 679, 321–329. [Google Scholar] [CrossRef]
- Abbas, E.; Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A.G.; Agostinelli, A.; et al. Charmonium and e+e− pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at = 2.76 TeV. Eur. Phys. J. C 2013, 73, 2617. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.; Adamová, D.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; Aiola, S.; Akindinov, A.; et al. Measurement of an excess in the yield of J/ψ at very low pT in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. Lett. 2016, 116, 222301. [Google Scholar] [CrossRef]
- Barreiro Alonso, F.; Aad, G.; Arnal, V.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terrón, J.; ATLAS Collaboration. Measurement of exclusive γγ → l+l− production in proton–proton collisions at = 7 TeV with the ATLAS detector. Phys. Lett. B 2015, 749, 242–261. [Google Scholar] [CrossRef]
- Zha, W.; Brandenburg, J.D.; Tang, Z.; Xu, Z. Initial transverse-momentum broadening of Breit-Wheeler process in relativistic heavy-ion collisions. Phys. Lett. B 2020, 800, 135089. [Google Scholar] [CrossRef]
- Wang, R.j.; Pu, S.; Wang, Q. Lepton pair production in ultraperipheral collisions. Phys. Rev. D 2021, 104, 056011. [Google Scholar] [CrossRef]
- Klein, S.; Mueller, A.H.; Xiao, B.W.; Yuan, F. Lepton Pair Production Through Two Photon Process in Heavy Ion Collisions. Phys. Rev. D 2020, 102, 094013. [Google Scholar] [CrossRef]
- Kłusek-Gawenda, M.; Schäfer, W.; Szczurek, A. Centrality dependence of dilepton production via γγ processes from Wigner distributions of photons in nuclei. Phys. Lett. B 2021, 814, 136114. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Del Valle, A.E.; Fruehwirth, R.; Jeitler, M.; Krammer, N.; et al. Observation of Forward Neutron Multiplicity Dependence of Dimuon Acoplanarity in Ultraperipheral Pb-Pb Collisions at = 5.02TeV. Phys. Rev. Lett. 2021, 127, 122001. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.H.; Zheng, D.X.; Zhou, J.; Zhou, Y.J. Studying Coulomb correction at EIC and EicC. Phys. Lett. B 2020, 808, 135679. [Google Scholar] [CrossRef]
- Zha, W.; Tang, Z. Discovery of higher-order quantum electrodynamics effect for the vacuum pair production. J. High Energy Phys. 2021, 2021, 83. [Google Scholar] [CrossRef]
- Brandenburg, J.D.; Zha, W.; Xu, Z. Mapping the electromagnetic fields of heavy-ion collisions with the Breit-Wheeler process. Eur. Phys. J. A 2021, 57, 299. [Google Scholar] [CrossRef]
- STAR Collaboration; Adam, J. Low-pTe+e− Pair Production in Au+Au Collisions at = 200 GeV and U+U Collisions at = 193GeV at STAR. Phys. Rev. Lett. 2018, 121, 132301. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abeloos, B.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Observation of Centrality-Dependent Acoplanarity for Muon Pairs Produced via Two-Photon Scattering in Pb + Pb Collisions at = 5.02 TeV with the ATLAS Detector. Phys. Rev. Lett. 2018, 121, 212301. [Google Scholar] [CrossRef]
- Klein, S.; Mueller, A.H.; Xiao, B.W.; Yuan, F. Acoplanarity of a Lepton Pair to Probe the Electromagnetic Property of Quark Matter. Phys. Rev. Lett. 2019, 122, 132301. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Greiner, C.; Xu, Z.; Zhuang, P. Incomplete electromagnetic response of hot QCD matter. Phys. Rev. C 2022, 105, L041901. [Google Scholar] [CrossRef]
- An, X.; Bluhm, M.; Du, L.; Dunne, G.V.; Elfner, H.; Gale, C.; Grefa, J.; Heinz, U.; Huang, A.; Karthein, J.M.; et al. The BEST framework for the search for the QCD critical point and the chiral magnetic effect. Nucl. Phys. A 2022, 1017, 122343. [Google Scholar] [CrossRef]
- Kłusek-Gawenda, M.; Rapp, R.; Schäfer, W.; Szczurek, A. Dilepton Radiation in Heavy-Ion Collisions at Small Transverse Momentum. Phys. Lett. B 2019, 790, 339–344. [Google Scholar] [CrossRef]
- Wang, X.; Brandenburg, J.D.; Ruan, L.; Shao, F.; Xu, Z.; Yang, C.; Zha, W. Energy Dependence of the Breit-Wheeler process in Heavy-Ion Collisions and its Application to Nuclear Charge Radius Measurements. arXiv 2022, arXiv:2207.05595. [Google Scholar]
- Abdallah, M.S.; Aboona, B.E.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; et al. Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions. arXiv 2022, arXiv:2204.01625. [Google Scholar]
- Budker, D.; Berengut, J.C.; Flambaum, V.V.; Gorchtein, M.; Jin, J.; Karbstein, F.; Krasny, M.W.; Litvinov, Y.A.; Pálffy, A.; Pascalutsa, V.; et al. Expanding Nuclear Physics Horizons with the Gamma Factory. Ann. Phys. 2021, 534, 2100284. [Google Scholar] [CrossRef]
- Hatta, Y.; Xiao, B.W.; Yuan, F.; Zhou, J. Azimuthal angular asymmetry of soft gluon radiation in jet production. Phys. Rev. D 2021, 104, 054037. [Google Scholar] [CrossRef]
- Xing, H.; Zhang, C.; Zhou, J.; Zhou, Y.J. The cos2ϕ azimuthal asymmetry in ρ0 meson production in ultraperipheral heavy ion collisions. JHEP 2020, 10, 064. [Google Scholar] [CrossRef]
- Bor, J.; Boer, D. TMD Evolution Study of the cos2ϕ Azimuthal Asymmetry in Unpolarized J/ψ Production at EIC. arXiv 2022, arXiv:2204.01527. [Google Scholar] [CrossRef]
- Zha, W.; Ruan, L.; Tang, Z.; Xu, Z.; Yang, S. Double-slit experiment at fermi scale: Coherent photoproduction in heavy-ion collisions. Phys. Rev. C 2019, 99, 061901. [Google Scholar] [CrossRef]
- Zha, W.; Brandenburg, J.D.; Ruan, L.; Tang, Z.; Xu, Z. Exploring the double-slit interference with linearly polarized photons. Phys. Rev. D 2021, 103, 033007. [Google Scholar] [CrossRef]
- Dyndal, M.; Klusek-Gawenda, M.; Schott, M.; Szczurek, A. Anomalous electromagnetic moments of τ lepton in γγ → τ+τ− reaction in Pb+Pb collisions at the LHC. Phys. Lett. B 2020, 809, 135682. [Google Scholar] [CrossRef]
- Xu, I.; Lewis, N.; Wang, X.; Brandenburg, J.D.; Ruan, L. Search for Dark Photons in γγ → e+e− at RHIC. arXiv 2022, arXiv:2211.02132. [Google Scholar]
- Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Lamas Valverde, J.; Neupane, S.; Williams, M.C.S.; Zichichi, A. A New type of resistive plate chamber: The Multigap RPC. Nucl. Instrum. Meth. A 1996, 374, 132–136. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Wang, X.; Chen, H.; Xu, Z.; Shao, M.; Ye, S.; Ruan, L.; Huang, S. A high time resolution multi-gap resistive plate chamber. Nucl. Sci. Tech. 2002, 13, 6–10. [Google Scholar]
- Li, C.; Wu, J.; Chen, H.; Wang, X.; Xu, Z.; Wang, Z.; Shao, M.; Huang, S.; Ruan, L. A prototype of the high time resolution MRPC. Chin. Phys. C 2001, 25, 933–935. [Google Scholar]
- Shao, M.; Ruan, L.J.; Chen, H.F.; Wu, J.; Li, C.; Xu, Z.Z.; Wang, X.L.; Huang, S.L.; Wang, Z.M.; Zhang, Z.P. Beam test results of two kinds of multi-gap resistive plate. Nucl. Instrum. Meth. A 2002, 492, 344–350. [Google Scholar] [CrossRef]
- Wu, J.; Bonner, B.; Chen, H.F.; Dong, X.; Eppley, G.; Geurts, F.; Huang, S.L.; Li, C.; Llope, W.J.; Nussbaum, T.; et al. The performance of the TOFr tray in STAR. Nucl. Instrum. Meth. A 2005, 538, 243–248. [Google Scholar] [CrossRef]
- Geurts, F.; Shao, M.; Bonner, B.; Chen, H.; Dong, X.; Eppley, G.; Huang, S.; Li, C.; Li, J.; Llope, W.; et al. Performance of the prototype MRPC detector for STAR. Nucl. Instrum. Meth. A 2004, 533, 60–64. [Google Scholar] [CrossRef]
- Shao, M.; Barannikova, O.Y.; Dong, X.; Fisyak, Y.; Ruan, L.; Sorensen, P.; Xu, Z. Extensive particle identification with TPC and TOF at the STAR experiment. Nucl. Instrum. Meth. A 2006, 558, 419–429. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; et al. Pion, kaon, proton and anti-proton transverse momentum distributions from p + p and d + Au collisions at = 200 GeV. Phys. Lett. B 2005, 616, 8–16. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; et al. Open charm yields in d + Au collisions at = 200 GeV. Phys. Rev. Lett. 2005, 94, 062301. [Google Scholar] [CrossRef]
- Ruan, L.; Shao, M.; Chen, H.; Li, C.; Wang, X.; Wu, J.; Xu, Z.; Huang, S. A Monte Carlo Simulation of Multi-gap Resistive Plate Chamber and Comparison with Experimental Results. Chin. Phys. C 2003, 27, 712–715. [Google Scholar]
- Zhao, Y.E.; Wang, X.L.; Liu, H.D.; Chen, H.F.; Li, C.; Wu, J.; Xu, Z.Z.; Shao, M.; Zeng, H.; Zhou, Y.; et al. Effect of temperature on the multi-gap resistive plate chamber operation. Nucl. Instrum. Meth. A 2005, 547, 334–341. [Google Scholar] [CrossRef]
- Shao, M.; Zhao, Y.; Li, C.; Chen, H.F.; Wang, X.L.; Wu, J.; Sun, Y.J.; Ruan, L.J. Simulation study on the operation of a multi-gap resistive plate chamber. Measur. Sci. Tech. 2006, 17, 123–127. [Google Scholar] [CrossRef]
- Shao, M.; Dong, X.; Tang, Z.; Xu, Y.; Huang, M.; Li, C.; Chen, H.F.; Lu, Y.; Zhang, Y. Upgrade of the calibration procedure for a STAR time-of-flight detector with new electronics. Measur. Sci. Tech. 2009, 20, 025102. [Google Scholar] [CrossRef]
- Zou, T.; Wang, X.; Shao, M.; Sun, Y.; Zhao, Y.E.; Tang, H.; Ming, Y.; Guo, J.; Zhang, Y.; Li, C.; et al. Quality control of MRPC mass production for STAR TOF. Nucl. Instrum. Meth. A 2009, 605, 282–292. [Google Scholar] [CrossRef]
- Llope, W.J. Multigap RPCs in the STAR experiment at RHIC. Nucl. Instrum. Meth. A 2012, 661, S110–S113. [Google Scholar] [CrossRef]
- Shao, M.; Sun, Y.; Tang, Z.; Zhang, Y.; Zhang, Y.; Zhang, Z.; Zhao, L. Technology Development for Nuclear Physics at USTC. Nucl. Phys. News 2019, 29, 5–11. [Google Scholar] [CrossRef]
- Hohler, P.M.; Rapp, R. Is ρ-Meson Melting Compatible with Chiral Restoration? Phys. Lett. B 2014, 731, 103–109. [Google Scholar] [CrossRef]
- Rapp, R.; Wambach, J. Low mass dileptons at the CERN SPS: Evidence for chiral restoration? Eur. Phys. J. A 1999, 6, 415–420. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.C.; et al. Measurements of Dielectron Production in Au+Au Collisions at = 200 GeV from the STAR Experiment. Phys. Rev. C 2015, 92, 024912. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.C.; et al. Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at = 19.6 and 200 GeV. Phys. Lett. B 2015, 750, 64–71. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Measurements of Dielectron Production in Au+Au Collisions at = 27, 39, and 62.4 GeV from the STAR Experiment. arXiv 2018, arXiv:1810.10159. [Google Scholar]
- NA60 Collaboration; Arnaldi, R.; Banicz, K.; Borer, K.; Castor, J.; Chaur, B.; Chen, W.; Cicalò, C.; Colla, A.; Cortese, P.; et al. NA60 results on thermal dimuons. Eur. Phys. J. C 2009, 61, 711–720. [Google Scholar] [CrossRef]
- HotQCD Collaboration; Bazavov, A.; Bhattacharya, T.; Buchoff, M.; Cheng, M.; Christ, N.; Ding, H.; Gupta, R.; Hegde, P.; Jung, C.; et al. The chiral transition and U(1)A symmetry restoration from lattice QCD using Domain Wall Fermions. Phys. Rev. D 2012, 86, 094503. [Google Scholar] [CrossRef]
- van Hees, H.; Rapp, R. Dilepton Radiation at the CERN Super Proton Synchrotron. Nucl. Phys. A 2008, 806, 339–387. [Google Scholar] [CrossRef]
- Agakishiev, G.; Balanda, A.; Belver, D.; Belyaev, A.; Blanco, A.; Böhmer, M.; Boyard, J.L.; Cabanelas, P.; Castro, E.; Chernenko, S.; et al. Dielectron production in Ar+KCl collisions at 1.76A GeV. Phys. Rev. C 2011, 84, 014902. [Google Scholar] [CrossRef]
- Ahdida, C.; Alocco, G.; Antinori, F.; Arba, M.; Aresti, M.; Arnaldi, R.; Roldan, A.B.; Beole, S.; Beraudo, A.; Bernhard, J.; et al. Letter of Intent: The NA60+ experiment. arXiv 2022, arXiv:2212.14452. [Google Scholar]
- Abgaryan, V.; Acevedo Kado, R.; Afanasyev, S.V.; Agakishiev, G.N.; Alpatov, E.; Altsybeev, G.; Alvarado Hernández, M.; Andreeva, S.V.; Andreeva, T.V.; Andronov, E.V.; et al. Status and initial physics performance studies of the MPD experiment at NICA. Eur. Phys. J. A 2022, 58, 140. [Google Scholar] [CrossRef]
- Ablyazimov, T.; Abuhoza, A.; Adak, R.P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; et al. Challenges in QCD matter physics –The scientific programme of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 2017, 53, 60. [Google Scholar] [CrossRef]
- Anderson, C.D. The Apparent Existence of Easily Deflectable Positives. Science 1932, 76, 238–239. [Google Scholar] [CrossRef]
- Chao, C.Y. Scattering of Hard γ-Rays. Phys. Rev. 1930, 36, 1519–1522. [Google Scholar] [CrossRef]
- Klemperer, O. On the annihilation radiation of the positron. Math. Proc. Camb. Philos. Soc. 1934, 30, 347–354. [Google Scholar] [CrossRef]
- Breit, G.; Wheeler, J.A. Collision of two light quanta. Phys. Rev. 1934, 46, 1087–1091. [Google Scholar] [CrossRef]
- Fermi, E. On the Theory of the impact between atoms and electrically charged particles. Z. Phys. 1924, 29, 315–327. [Google Scholar] [CrossRef]
- Bauer, R.; Breskin, A.; Chechik, R.; Drees, A.; Faschingbauer, U.; Fischer, P.; Fraenkel, Z.; Fuchs, C.; Gatti, E.; Gläß, J.; et al. Measurement of electromagnetically produced e+e− pairs in distant S-Pt collisions. Phys. Lett. B 1994, 332, 471–476. [Google Scholar] [CrossRef]
- Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alverson, G.; Alviggi, M.G.; et al. Production of e, μ and τ pairs in untagged two photon collisions at LEP. Phys. Lett. B 1997, 407, 341–350. [Google Scholar] [CrossRef]
- Adeva, B.; Anderhub, H.; Ansari, S.; Becker, U.; Becker-Szendy, R.; Berdugo, J.; Boehm, A.; Bourquin, M.; Branson, J.G.; Burger, J.D.; et al. Electroweak studies in e+e− collisions: 12< < 46.78 GeV. Phys. Rev. D 1988, 38, 2665–2678. [Google Scholar] [CrossRef]
- The OPAL Collaboration; Abbiendi, G. Total hadronic cross-section of photon-photon interactions at LEP. Eur. Phys. J. C 2000, 14, 199–212. [Google Scholar] [CrossRef]
- The CMS collaboration; Chatrchyan, S. Search for exclusive or semi-exclusive γγ production and observation of exclusive and semi-exclusive e+e− production in pp collisions at = 7 TeV. J. High Energ. Phys. 2012, 2012, 80. [Google Scholar]
- The CMS Collaboration; TOTEM Collaboration; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brstetter, J.; Brondolin, E.; et al. Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer. J. High Energ. Phys. 2018, 2018, 153. [Google Scholar]
- Abdallah, M.S.; Aboona, B.E.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; et al. Measurement of e+e− Momentum and Angular Distributions from Linearly Polarized Photon Collisions. Phys. Rev. Lett. 2021, 127, 052302. [Google Scholar] [CrossRef]
- Klein, S.R.; Nystrand, J.; Seger, J.; Gorbunov, Y.; Butterworth, J. STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Comput. Phys. Commun. 2017, 212, 258–268. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at = 200 GeV and U+U collisions at = 193 GeV. Phys. Rev. Lett. 2019, 123, 132302. [Google Scholar] [CrossRef] [PubMed]
- Zha, W.; Klein, S.R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S. Coherent J/ψ photoproduction in hadronic heavy-ion collisions. Phys. Rev. C 2018, 97, 044910. [Google Scholar] [CrossRef]
- Zha, W.; Ruan, L.; Tang, Z.; Xu, Z.; Yang, S. Coherent photo-produced J/ψ and dielectron yields in isobaric collisions. Phys. Lett. B 2019, 789, 238–242. [Google Scholar] [CrossRef]
- Wang, P.; Wu, X.; Zha, W.; Tang, Z. Calculations of differential momentum transfer spectra for J/ψ photoproduction in heavy-ion collisions. Chin. Phys. C 2022, 46, 074103. [Google Scholar] [CrossRef]
- Kłusek-Gawenda, M.; Szczurek, A. Photoproduction of J/ψ mesons in peripheral and semicentral heavy ion collisions. Phys. Rev. C 2016, 93, 044912. [Google Scholar] [CrossRef]
- Zha, W.; Ruan, L.; Tang, Z.; Xu, Z.; Yang, S. Coherent lepton pair production in hadronic heavy ion collisions. Phys. Lett. B 2018, 781, 182–186. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Zhou, Y.J. Probing the linear polarization of photons in ultraperipheral heavy ion collisions. Phys. Lett. B 2019, 795, 576–580. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Zhou, Y.J. Impact parameter dependence of the azimuthal asymmetry in lepton pair production in heavy ion collisions. Phys. Rev. D 2020, 101, 034015. [Google Scholar] [CrossRef] [Green Version]
- Heisenberg, W.; Euler, H. Consequences of Dirac’s theory of positrons. Z. Phys. 1936, 98, 714–732. [Google Scholar] [CrossRef]
- Harland-Lang, L.A.; Khoze, V.A.; Ryskin, M.G. Exclusive LHC physics with heavy ions: SuperChic 3. Eur. Phys. J. C 2019, 79, 39. [Google Scholar] [CrossRef] [PubMed]
- ALICE Collaboration. Letter of intent for ALICE 3: A next-generation heavy-ion experiment at the LHC. arXiv 2022, arXiv:2211.02491. [Google Scholar]
- SN0755: The STAR Beam Use Request for Run-21, Run-22 and Data Taking in 2023-25|The STAR Experiment. 2021. Available online: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0755 (accessed on 1 September 2020).
- Prospects for Measurements of Photon-Induced Processes in Ultra-Peripheral Collisions of Heavy Ions with the ATLAS Detector in the LHC Runs 3 and 4-CERN Document Server. 2018. Available online: http://cds.cern.ch/record/2641655/files/ (accessed on 4 October 2018).
- ATLAS Collaboration. Measurement of muon pairs produced via γγ scattering in non-ultraperipheral Pb+Pb collisions at =5.02 TeV with the ATLAS detector. arXiv 2022, arXiv:2206.12594. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Ruan, L.; Shao, M.; Sun, Y.; Tang, Z.; Xu, Z.; Zha, W.; Zhang, Y. Dilepton Program with Time-of-Flight Detector at the STAR Experiment. Symmetry 2023, 15, 392. https://doi.org/10.3390/sym15020392
Dong X, Ruan L, Shao M, Sun Y, Tang Z, Xu Z, Zha W, Zhang Y. Dilepton Program with Time-of-Flight Detector at the STAR Experiment. Symmetry. 2023; 15(2):392. https://doi.org/10.3390/sym15020392
Chicago/Turabian StyleDong, Xin, Lijuan Ruan, Ming Shao, Yongjie Sun, Zebo Tang, Zhangbu Xu, Wangmei Zha, and Yifei Zhang. 2023. "Dilepton Program with Time-of-Flight Detector at the STAR Experiment" Symmetry 15, no. 2: 392. https://doi.org/10.3390/sym15020392
APA StyleDong, X., Ruan, L., Shao, M., Sun, Y., Tang, Z., Xu, Z., Zha, W., & Zhang, Y. (2023). Dilepton Program with Time-of-Flight Detector at the STAR Experiment. Symmetry, 15(2), 392. https://doi.org/10.3390/sym15020392