Multiplicatively Simpson Type Inequalities via Fractional Integral
Abstract
:1. Introduction
- ,
- ,
- ,
- ,
- .
- ,
- ,
- ,
- ,
- and .
2. Main Results
3. Applications to Special Means
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grossman, M.; Katz, R. Non-Newtonian Calculus; Lee Press: Pigeon Cove, MA, USA, 1972. [Google Scholar]
- Bashirov, A.E.; Kurpınar, E.M.; Özyapıcı, A. Multiplicative calculus and its applications. J. Math. Anal. Appl. 2008, 337, 36–48. [Google Scholar]
- Ali, M.A.; Kara, H.; Tariboon, J.; Asawasamrit, S.; Budak, H.; Hezenci, F. Some new Simpson’s formula-type inequalities for twice-differentiable convex functions via generalized fractional operators. Symmetry 2021, 13, 2249. [Google Scholar] [CrossRef]
- Bachar, M.; Guessab, A.; Mohammed, O.; Zaim, Y. New cubature formulas and Hermite-Hadamard type inequalities using integrals over some hyperplanes in the d-dimensional hyper-rectangle. Appl. Math. Comput. 2017, 315, 347–362. [Google Scholar] [CrossRef]
- Chen, S.B.; Rashid, S.; Noor, M.A.; Ashraf, R.; Chu, Y.M. A new approach on fractional calculus and probability density function. AIMS Math. 2020, 5, 7041–7054. [Google Scholar] [CrossRef]
- Guessab, A.; Schmeisser, G. Necessary and sufficient conditions for the validity of Jensen’s inequality. Arch. Math. 2013, 100, 561–570. [Google Scholar]
- Kashuri, A.; Meftah, B.; Mohammed, P.O. Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Fract. Calc. Nonlinear Syst. 2021, 1, 75–94. [Google Scholar]
- Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupa, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional weighted Ostrowski type inequalities and their applications. Symmetry 2021, 13, 968. [Google Scholar]
- Kalsoom, H.; Wu, J.D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef]
- Meftah, B. Some new Ostrowski’s inequalities for functions whose nth derivatives are logarithmically convex. Ann. Math. Sil. 2017, 32, 275–284. [Google Scholar]
- Meftah, B. Some new Ostrowski’s inequalities for n-times differentiable mappings which are quasi-convex. Facta Univ. Ser. Math. Inform. 2017, 32, 319–327. [Google Scholar]
- Meftah, B.; Azaizia, A. Fractional Ostrowski Type Inequalities for Functions Whose First Derivatives Are MT-Preinvex; Revista MATUA: Madrid, Spain, 2019; Volume 1, pp. 33–34. ISSN 2389-7422. [Google Scholar]
- Nasir, J.; Qaisar, S.; Butt, S.I.; Khan, K.A.; Mabela, R.M. Some Simpson’s Riemann-Liouville fractional integral inequalities with applications to special functions. J. Funct. Spaces 2022, 2022, 2113742. [Google Scholar] [CrossRef]
- Rangel-Oliveros, Y.; Nwaeze, E.R. Simpson’s type inequalities for exponentially convex functions with applications. Open J. Math. Sci. 2021, 5, 84–94. [Google Scholar] [CrossRef]
- Şanlı, Z. Simpson type conformable fractional inequalities. J. Funct. Spaces 2022, 2022, 5707887. [Google Scholar] [CrossRef]
- Soontharanon, J.; Ali, M.A.; Budak, H.; Nonlaopon, K.; Abdullah, Z. Simpson’s and Newton’s type tnequalities for (α,m) convex functions via quantum calculus. Symmetry 2022, 14, 736. [Google Scholar]
- Vivas-Cortez, M.J.; Ali, M.A.; Qaisar, S.; Sial, I.B.; Jansem, S.; Mateen, A. On some new Simpson’s formula type inequalities for convex functions in post-quantum calculus. Symmetry 2021, 13, 2419. [Google Scholar] [CrossRef]
- Shafqat, R.; Niazi, A.U.K.; Yavuz, M.; Jeelani, M.B.; Saleem, K. Mild solution for the time-fractional Navier—Stokes equation incorporating MHD effects. Fractal Fract. 2022, 6, 580. [Google Scholar] [CrossRef]
- Boulares, H.; Ardjouni, A.; Laskri, Y. Existence and uniqueness of solutions for nonlinear fractional nabla difference systems with initial conditions. Fract. Differ. Calc. 2017, 7, 247–263. [Google Scholar]
- Boulares, H.; Ardjouni, A.; Laskri, Y. Existence and uniqueness of solutions to fractional order nonlinear neutral differential equations. Appl. Math. E-Notes 2018, 18, 25–33. [Google Scholar]
- Ali, M.A.; Budak, H.; Sarikaya, M.Z.; Zhang, Z. Ostrowski and Simpson type inequalities for multiplicative integrals. Proyecciones 2021, 40, 743–763. [Google Scholar]
- Aniszewska, D. Multiplicative runge—Kutta methods. Nonlinear Dyn. 2007, 50, 265–272. [Google Scholar]
- Riza, M.; Özyapici, A.; Misirli, E. Multiplicative finite difference methods. Quart. Appl. Math. 2009, 67, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Misirli, E.; Gurefe, Y. Multiplicative Adams Bashforth-Moulton methods. Numer. Algorithms 2011, 57, 425–439. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Norozpour, S. On complex multiplicative integration. TWMS J. Appl. Eng. Math. 2017, 7, 82–93. [Google Scholar]
- Bhat, A.H.; Majid, J.; Shah, T.R.; Wani, I.A.; Jain, R. Multiplicative Fourier transform and its applications to multiplicative differential equations. J. Comput. Math. Sci. 2019, 10, 375–383. [Google Scholar]
- Bhat, A.H.; Majid, J.; Wani, I.A. Multiplicative Sumudu transform and its Applications. Emerg. Tech. Innov. Res. 2019, 6, 579–589. [Google Scholar]
- Bashirov, A.E. On line and double multiplicative integrals. TWMS J. Appl. Eng. Math. 2013, 3, 103–107. [Google Scholar]
- Ali, M.A.; Abbas, M.; Zhang, Z.; Sial, I.B.; Arif, R. On integral inequalities for product and quotient of two multiplicatively convex functions. Asian Res. J. Math. 2019, 12, 1–11. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Zafer, A.A. On some Hermite-Hadamard integral inequalities in multiplicative calculus. J. Ineq. Spec. Func. 2019, 10, 111–122. [Google Scholar]
- Özcan, S. Hermite-Hadamard type inequalities for multiplicatively h-convex functions. Konuralp J. Math. 2020, 8, 158–164. [Google Scholar]
- Özcan, S. Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Math. 2020, 5, 1505–1518. [Google Scholar]
- Özcan, S. Hermite-Hadamard type inequalities for multiplicatively h-preinvex functions. Turk. J. Anal. Number Theory 2021, 9, 65–70. [Google Scholar]
- Meftah, B. Maclaurin type inequalities for multiplicatively convex functions. Proc. Amer. Math. Soc. accepted paper.
- Abdeljawad, T.; Grossman, M. On geometric fractional calculus. J. Semigroup Theory Appl. 2016, 2016, 1–14. [Google Scholar]
- Budak, H.; Özçelik, K. On Hermite-Hadamard type inequalities for multiplicative fractional integrals. Miskolc Math. Notes 2020, 21, 91–99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumen, A.; Boulares, H.; Meftah, B.; Shafqat, R.; Alraqad, T.; Ali, E.E.; Khaled, Z. Multiplicatively Simpson Type Inequalities via Fractional Integral. Symmetry 2023, 15, 460. https://doi.org/10.3390/sym15020460
Moumen A, Boulares H, Meftah B, Shafqat R, Alraqad T, Ali EE, Khaled Z. Multiplicatively Simpson Type Inequalities via Fractional Integral. Symmetry. 2023; 15(2):460. https://doi.org/10.3390/sym15020460
Chicago/Turabian StyleMoumen, Abdelkader, Hamid Boulares, Badreddine Meftah, Ramsha Shafqat, Tariq Alraqad, Ekram E. Ali, and Zennir Khaled. 2023. "Multiplicatively Simpson Type Inequalities via Fractional Integral" Symmetry 15, no. 2: 460. https://doi.org/10.3390/sym15020460