Solving Integral Equations via Hybrid Interpolative ℛℐ-Type Contractions in 𝔟-Metric Spaces
Abstract
:1. Introduction and Preliminaries
2. Main Results
- (1)
- S is continuous;
- (2)
- S is a π orbital-admissible mapping;
- (3)
- exists such that .
- (1)
- is continuous;
- (2)
- S is a π orbital-admissible mapping;
- (3)
- exists such that ,
- (4)
- for all
- (1)
- Either S is is continuous;
- (2)
- S is a π orbital-admissible mapping;
- (3)
- exists such that ,
- (4)
- A constant exists such that at least one of the following conditions is fulfilled for all distinct :
- (a)
- (b)
- (c)
- (d)
- (e)
- (f)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
3. Application
- (1)
- Let and be continuous;
- (2)
- exists such that ;
- (3)
- A continuous function exists such thatfor each and where .
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrals. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamran, T.; Din, F.; Anwar, M. Fixed and Common Fixed Point Theorems for Wardowski Type Mappings in Uniform Spaces. UPB Sci. Bull. Ser. A 2018, 80, 1–12. [Google Scholar]
- Anwar, M.; Shehwar, D.; Ali, R.; Hussain, N. Wardowski Type α-F-Contractive Approach for Nonself Multivalued Mappings. UPB Sci. Bull. Ser. A 2020, 82, 69–77. [Google Scholar]
- Boyd, D.W.; Wong, J.S. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar]
- Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215, 241–251. [Google Scholar] [CrossRef]
- Chatterjea, S. Fixed-point theorems. Dokl. Bolg. Akad. Nauk. 1972, 25, 727. [Google Scholar]
- Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
- He, L.; Cui, Y.-L.; Ceng, L.-C.; Zhao, T.-Y.; Wang, D.-Q.; Hu, H.-Y. Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule. J. Inequalities Appl. 2021, 2021, 146. [Google Scholar] [CrossRef]
- Ceng, L.-C.; Wen, C.-F.; Liou, Y.-C.; Yao, J.-C. A General Class of Differential Hemivariational Inequalities Systems in Reflexive Banach Spaces. Mathematics 2021, 9, 3173. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Bakhtin, I. The contraction mapping principle in quasi metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Adiguzel, R.S.; Aksoy, U.; Karapınar, E.; Erhan, I.M. On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 2021, 20, 313–333. [Google Scholar]
- Anwar, M.; Shehwar, D.; Ali, R. Fixed Point Theorems on α-F-contractive Mapping in Extended b-Metric Spaces. J. Math. Anal. 2020, 11, 43–51. [Google Scholar]
- Batul, S.; Sagheer, D.; Anwar, M.; Aydi, H.; Parvaneh, V. Fuzzy fixed-point results of Fuzzy Mappings on b-metric Spaces via (α*-F)-contractions. Adv. Math. Phys. 2022, 2022, 4511632. [Google Scholar] [CrossRef]
- Bernide, V.; Pacurar, M. The early developments in fixed-point theory on b-metric spaces. Carpathian J. Math. 2022, 38, 523–538. [Google Scholar]
- Bota, M.F.; Micula, S. Ulam–Hyers stability via fixed-point results for special contractions in b-metric spaces. Symmetry 2022, 14, 2461. [Google Scholar] [CrossRef]
- Kirk, M.; Kiziltunc, H. On some well known fixed point theorems in b-metric spaces. Turk. J. Anal. Number Theory 2013, 1, 13–16. [Google Scholar]
- Shatanawi, W.; Pitea, A.; Lazović, R. Contraction conditions using comparison functions on b-metric spaces. Fixed-Point Theory Appl. 2014, 2014, 135. [Google Scholar] [CrossRef]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequalities Appl. 2017, 256, 1–11. [Google Scholar]
- Younis, M.; Singh, D.; Abdou, A.A. A fixed point approach for tuning circuit problem in dislocated b-metric spaces. Math. Methods Appl. Sci. 2022, 45, 2234–2253. [Google Scholar] [CrossRef]
- Bhat, I.A.; Mishra, L.N. Numerical Solutions of Volterra Integral Equations of Third Kind and Its Convergence Analysis. Symmetry 2022, 14, 2600. [Google Scholar] [CrossRef]
- Pathak, V.K.; Mishra, L.N. Application of Fixed Point Theorem to Solvability for Non-Linear Fractional Hadamard Functional Integral Equations. Mathematics 2022, 10, 2400. [Google Scholar] [CrossRef]
- Al-Rawashdeh, A.; Hassen, A.; Abdelbasset, F.; Sehmim, S.; Shatanawi, W. On common fixed points for α-F-contractions and applications. J. Nonlinear Sci. Appl. 2016, 9, 3445–3458. [Google Scholar]
- Mlaiki, N.; Özgür, N.i.Y.; Mukheimer, A.; Taş, N. A new extension of the Mb-metric spaces. J. Math. Anal. 2018, 9, 118–133. [Google Scholar]
- Karapinar, E.; Fulga, A.; Shahzad, N.; de Hierro, A.F.R.L. Solving Integral Equations by Means of fixed-point theory. J. Funct. Spaces 2022, 2022, 7667499. [Google Scholar] [CrossRef]
- Istraţescu, V.I. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I. Ann. Mat. Pura Appl. 1982, 130, 89–104. [Google Scholar] [CrossRef]
- Istraţescu, V.I. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters, II. Ann. Mat. Pura Appl. 1983, 134, 327–362. [Google Scholar] [CrossRef]
- Karapinar, E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Its Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloqaily, A.; Sagheer, D.-e.-S.; Urooj, I.; Batul, S.; Mlaiki, N. Solving Integral Equations via Hybrid Interpolative ℛℐ-Type Contractions in 𝔟-Metric Spaces. Symmetry 2023, 15, 465. https://doi.org/10.3390/sym15020465
Aloqaily A, Sagheer D-e-S, Urooj I, Batul S, Mlaiki N. Solving Integral Equations via Hybrid Interpolative ℛℐ-Type Contractions in 𝔟-Metric Spaces. Symmetry. 2023; 15(2):465. https://doi.org/10.3390/sym15020465
Chicago/Turabian StyleAloqaily, Ahmad, Dur-e-Shehwar Sagheer, Isma Urooj, Samina Batul, and Nabil Mlaiki. 2023. "Solving Integral Equations via Hybrid Interpolative ℛℐ-Type Contractions in 𝔟-Metric Spaces" Symmetry 15, no. 2: 465. https://doi.org/10.3390/sym15020465
APA StyleAloqaily, A., Sagheer, D.-e.-S., Urooj, I., Batul, S., & Mlaiki, N. (2023). Solving Integral Equations via Hybrid Interpolative ℛℐ-Type Contractions in 𝔟-Metric Spaces. Symmetry, 15(2), 465. https://doi.org/10.3390/sym15020465