Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- Case (i). For .
- Via the convexity of and the properties of the absolute value function in Lemma 1, the above inequality can be obtained.
- Case (ii): For .
- Case (i). For .
- Via the convexity of and utilizing the properties of the absolute value function (Lemma 3), the desired result can be obtained easily.
- Case (ii). For .
- With the use of Power mean inequality and properties of the absolute value function in Lemma 3, we have□
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magin, R.L. Fractional Calculus in Bio-Engineering; Begell House Inc. Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef]
- Thaiprayoon, C.; Sudsutad, W.; Alzabut, J.; Etemad, S.; Rezapour, S. On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator. Adv. Differ. Equ. 2021, 2021, 201. [Google Scholar] [CrossRef]
- Cesarone, F.; Caputo, M.; Cametti, C. Memory formalism in the passive diffusion across a biological membrane. J. Membr. Sci. 2004, 250, 79–84. [Google Scholar] [CrossRef]
- Bonyah, E.; Chukwu, C.W.; Juga, M.L.; Fatmawati. Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law. AIMS Math 2021, 6, 8367–8389. [Google Scholar] [CrossRef]
- Mohammad, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Etemad, S.; Avci, I.; Kumar, P.; Baleanu, D.; Rezapour, S. Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 2022, 162, 112511. [Google Scholar] [CrossRef]
- Iaffaldano, G.; Caputo, M.; Martino, S. Experimental and theoretical memory diffusion of water in the sand. Hydrol. Earth Syst. Sci. 2006, 10, 93–100. [Google Scholar] [CrossRef]
- Jumarie, G. New stochastic fractional models for Malthusiangrowth, the Poissonian birth process and optimal management of populations. Math. Comput. Model. 2006, 44, 231–254. [Google Scholar] [CrossRef]
- Caputo, M. Modeling Social and Economic Cycles. In Alternative Public Economics; Forte, F., Navarra, P., Mudambi, R., Eds.; Elgar: Cheltenham, UK, 2014. [Google Scholar]
- Etemad, S.; Iqbal, I.; Samei, M.E.; Rezapour, S.; Alzabut, J.; Sudsutad, W.; Goksel, I. Some inequalities on multi-functions for applying in the fractional Caputo–Hadamard jerk inclusion system. J. Inequal. Appl. 2022, 2022, 84. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. Nonlinear equations with global differential and integral operators: Existence, uniqueness with application to epidemiology. Res. Phys. 2021, 20, 103593. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Karaoglan, A.; Ragusa, M.A.; Set, E. Fractional integral inequalities via Atangana-Baleanu operators for convex and concave functions. J. Funct. Spaces 2021, 2021, 1055434. [Google Scholar] [CrossRef]
- Rizwan, R.; Zada, A.; Wang, X. Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses. Adv. Differ. Equ. 2019, 2019, 85. [Google Scholar] [CrossRef]
- Belmor, S.; Jarad, F.; Abdeljawad, T.; Kinic, G. A study of boundary value problem for generalized fractional differential inclusion via endpoint theory for weak contractions. Adv. Differ. Equ. 2020, 2020, 348. [Google Scholar] [CrossRef]
- Mohammad, H.; Rezapour, S.; Etemad, S.; Baleanu, D. Two sequential fractional hybrid differential inclusions. Adv. Differ. Equ. 2020, 2020, 385. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Guirao, J.L.G. Numerical solutions caused by DGJIM and ADM methods for multi-term fractional BVP involving the generalized ψ-RL-operators. Symmetry 2021, 13, 532. [Google Scholar] [CrossRef]
- Phuong, N.D.; Sakar, F.M.; Etemad, S.; Rezapour, S. A novel fractional structure of a multi-order quantum multi-integro-differential problem. Adv. Differ. Equ. 2020, 2020, 633. [Google Scholar] [CrossRef]
- Rezapour, S.; Souid, M.S.; Bouazza, Z.; Hussain, A.; Etemad, S. On the fractional variable order thermostat model: Existence theory on cones via piece-wise constant functions. J. Funct. Spaces 2022, 2022, 8053620. [Google Scholar] [CrossRef]
- Kunt, M.; Iscan, I.; Yazici, N.; Gozutok, U. On new inequalities of Hermite-Hadamard-Fejer type for harmonically convex functions via fractional integrals. Springer Plus 2016, 5, 635. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Beckenbach, E.; Bellman, R. An Introduction to Inequalities; Random House Inc.: New York, NY, USA, 1961. [Google Scholar]
- El-Hamid, H.A.A.; Rezk, H.M.; Ahmed, A.M.; Al Nemer, G.; Zakarya, M.; El Saify, H.A. Dynamic inequalities in quotients with general kernels and measures. J. Funct. Spaces 2020, 2020, 5417084. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; Abohela, I.; Baleanu, D. Refinement multidimensional dynamic inequalities with general kernels and measures. J. Inequal. Appl. 2019, 2019, 306. [Google Scholar] [CrossRef]
- AlNemer, G.; Zakarya, M.; El-Hamid, H.A.A.; Kenawy, M.R.; Rezk, H.M. Dynamic Hardy-type inequalities with non-conjugate parameters. Alex. Eng. J. 2020, 59, 4523–4532. [Google Scholar] [CrossRef]
- Zakarya, M.; Altanji, M.; AlNemer, G.; El-Hamid, H.A.A.; Cesarano, C.; Rezk, H.M. Fractional reverse Coposn’s inequalities via conformable calculus on time scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
- Hadamard, J. Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–216. [Google Scholar]
- Farid, G.; Pecaric, J.; Nonlaopon, K. Inequalities for fractional Riemann–Liouville integrals of certain class of convex functions. Adv. Cont. Discr. Models 2022, 8, 766. [Google Scholar] [CrossRef]
- Habibullah, G.M.; Mubeen, S. k-Fractional integrals and Application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Farid, G.; Nazeer, W.; Saleem, M.; Mehmood, S.; Kang, S. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications. Mathematics 2018, 6, 248. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-liouville k -fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Yang, X.; Farid, G.; Nazeer, W.; Yussouf, M.; Chu, Y.-M.; Dong, C. Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex functions. AIMS Math. 2020, 5, 6325–6340. [Google Scholar] [CrossRef]
- Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Turhan, S.; Kunt, M.; Iscan, I. Hermite-Hadamard type inequalities for MΦA-convex functions. Int. J. Math. Model. Comp. 2020, 10, 57–75. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Math. 2007, 15, 179–192. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland: New York, NY, USA, 2006. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
- Toplu, T.; Set, E.; Iscan, I.; Maden, S. Hermite-Hadamard-type inequalities for p-convex functions via Katugampola fractional integrals. Facta Univ. Ser. Math. Inform. 2019, 34, 149–164. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, I.A.; Marichev, O.I. Integrals and Series: Special Functions; CRC Press: Boca Raton, FL, USA, 1986; Volume 2. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, M.; Yaqoob, M.; Samraiz, M.; Shabbir, I.; Etemad, S.; De la Sen, M.; Rezapour, S. Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples. Symmetry 2023, 15, 479. https://doi.org/10.3390/sym15020479
Mukhtar M, Yaqoob M, Samraiz M, Shabbir I, Etemad S, De la Sen M, Rezapour S. Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples. Symmetry. 2023; 15(2):479. https://doi.org/10.3390/sym15020479
Chicago/Turabian StyleMukhtar, Muzammil, Muhammad Yaqoob, Muhammad Samraiz, Iram Shabbir, Sina Etemad, Manuel De la Sen, and Shahram Rezapour. 2023. "Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples" Symmetry 15, no. 2: 479. https://doi.org/10.3390/sym15020479
APA StyleMukhtar, M., Yaqoob, M., Samraiz, M., Shabbir, I., Etemad, S., De la Sen, M., & Rezapour, S. (2023). Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples. Symmetry, 15(2), 479. https://doi.org/10.3390/sym15020479