Applications of Orthogonal Polynomials in Simulations of Mass Transfer Diffusion Equation Arising in Food Engineering
Abstract
:1. Introduction
2. Mathematical Model and Methodology
3. Error Analysis
4. Numerical Examples
4.1. Example 1
4.2. Example 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abd-Elhameed, W.M.; Badah, B.M.; Amin, A.K.; Alsuyuti, M.M. Spectral Solutions of Even-Order BVPs Based on New Operational Matrix of Derivatives of Generalized Jacobi Polynomials. Symmetry 2023, 15, 345. [Google Scholar] [CrossRef]
- Ryoo, C.-S.; Kang, J.-Y. Some Identities Involving Degenerate q-Hermite Polynomials Arising from Differential Equations and Distribution of Their Zeros. Symmetry 2022, 14, 706. [Google Scholar] [CrossRef]
- Karp, D.; Prilepkina, E. Beyond the Beta Integral Method: Transformation Formulas for Hypergeometric Functions via Meijer’s G Function. Symmetry 2022, 14, 1541. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbaşı, Ş.; Ansari, K.J. Application of Vieta–Lucas Series to Solve a Class of Multi-Pantograph Delay Differential Equations with Singularity. Symmetry 2021, 13, 2370. [Google Scholar] [CrossRef]
- Sitnik, S.M.; Yadrikhinskiy, K.V.; Fedorov, V.E. Symmetry Analysis of a Model of Option Pricing and Hedging. Symmetry 2022, 14, 1841. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Asymptotic Behavior of Three Connected Stochastic Delay Neoclassical Growth Systems Using Spectral Technique. Mathematics 2022, 10, 3639. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry 2022, 14, 1838. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Dynamics and simulations of stochastic COVID-19 epidemic model using Legendre spectral collocation method. AIMS Math. 2023, 8, 4220–4236. [Google Scholar] [CrossRef]
- Mujumdar, A.S. Book Review: Handbook of Industrial Drying, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bruce, D.M.; Ginger, S.A. Mathematical modeling of grain drying in counter-flow beds: Investigation of crossover of air and grain temperatures. J. Agric. Eng. Res. 1993, 55, 143–161. [Google Scholar] [CrossRef]
- Lopez, I.I.R.; Espinosa, H.R.; Lozada, P.A.; Pozos, M.E.B.; Alvarado, M.A.G. Analytical model for variable moisture diffusivity estimation and drying simulation of shrinkable food products. J. Food Eng. 2012, 108, 427–435. [Google Scholar] [CrossRef]
- Barati, E.; Esfahani, J.A. A new solution approach for simultaneous heat and mass transfer during convective drying of mango. J. Food Eng. 2011, 102, 302–309. [Google Scholar] [CrossRef]
- Vahishosseini, S.M.; Barati, E.; Esfahani, J.A. Green’s function method (GFM) and mathematical solution for coupled equations of transport problem during convective drying. J. Food Eng. 2016, 187, 24–36. [Google Scholar] [CrossRef]
- Moore, T.J.; Jones, M.R. Solving nonlinear heat transfer problems using variation of parameters. Int. J. Therm. Sci. 2015, 93, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Tang, T. Spectral and High-Order Methods with Applications; Mathematics Monograph Series; Science Press: Beijing, China, 2006. [Google Scholar]
- Hussain, M.; Dincer, I. Numerical simulation of two dimensional heat and moisture transfer during drying of a rectangular object. Numer. Heat Transf. Part A 2003, 43, 867–878. [Google Scholar] [CrossRef]
- Tzempelikos, D.A.; Mitrakos, D.; Vouros, A.P.; Bardakas, A.V.; Filios, A.E.; Margaris, D.P. Numerical modelling of heat and mass transfer during convective drying of cylindrical quince slices. J. Food. Eng. 2015, 156, 10–21. [Google Scholar] [CrossRef]
- Aversa, M.; Curcio, S.; Calabro, V.; Iorio, G. An analysis of the transport phenomena occurring during food drying process. J. Food Eng. 2007, 78, 922–934. [Google Scholar] [CrossRef]
- Bakalis, S.; Kyritsi, A.; Sarathanos, V.K.; Sanniotis, V.Y. Modeling of rice hydration using finite elements. J. Food Eng. 2009, 94, 321–325. [Google Scholar] [CrossRef]
- Nilnont, W.; Thepa, S.; Janjai, S.; Kasayapanand, N.; Thamrongmas, C.; Bala, B. Finite elements simulation for coffee (Coffea arabica) drying. Food Bioprod. Process. 2011, 90, 341–350. [Google Scholar] [CrossRef]
- Lamnatou, C.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N. Finite-volume modelling of heat and mass transfer during convective drying of porous bodies non-conjugate and conjugate formulations involving the aerodynamic effects. Renew. Energy 2010, 35, 1391–1402. [Google Scholar] [CrossRef]
- Mishkin, M.; Saguy, I.; Karel, M. Dynamic optimization of dehydration process: Minimizing browning in dehydration of potatoes. J. Food Sci. 1983, 48, 17–21. [Google Scholar] [CrossRef]
- Wang, N.; Brennan, J.G. A mathematical model of simultaneous heat and moisture transfer during drying of potato. J. Food Eng. 1995, 24, 47–60. [Google Scholar] [CrossRef]
- Alvarado, M.A.; Aguirre, F.M.P.; Lopez, I.I.R. Analytical solution of simultaneous heat and mass transfer equations during food drying. J. Food Eng. 2014, 142, 9–45. [Google Scholar]
- Hafez, R.M.; Zaky, M.A. High-order continuous Galerkin methods for multi-dimensional advection–reaction–diffusion problems. Eng. Comput. 2020, 36, 1813–1829. [Google Scholar] [CrossRef]
- Yang, Y.; Rządkowski, G.; Pasban, A.; Tohidi, E.; Shateyi, S. A high accurate scheme for numerical simulation of two-dimensional mass transfer processes in food engineering. Alex. Eng. J. 2021, 60, 2629–2639. [Google Scholar] [CrossRef]
- Zaky, M.A.; Hendy, A.S. An efficient dissipation preserving Legendre Galerkin spectral method for the Higgs boson equation in the de Sitter spacetime universe. Appl. Num. Math. 2021, 160, 281–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Guan, F.; Tian, J.; Li, Z.; Zhang, S.; Zhao, M. Preparation and numerical simulation of food gum electrospun nanofibers. J. Food Eng. 2023, 341, 111352. [Google Scholar] [CrossRef]
- González-Pérez, J.E.; Romo-Hernández, A.; Ramírez-Corona, N.; López-Malo, A. Modeling mass transfer during osmodehydration of apple cubes with sucrose or apple juice concentrate solutions: Equilibrium estimation, diffusion model, and state observer based approach. J. Food Process. Eng. 2022, 45, e14125. [Google Scholar] [CrossRef]
- Pinheiro, R.M.M.; da Silva, W.P.; do Amaral Miranda, D.S.; eSilva, C.M.D.P.S.; Pessoa, T. Osmotic dehydration of cubic pieces of melon: Description through a three-dimensional diffusion model considering the resistance to mass flows on the surface. Heat Mass Transf. 2021, 57, 405–415. [Google Scholar] [CrossRef]
- Greiciunas, E.; Municchi, F.; Pasquale, N.D.; Icardi, M. Numerical simulation of crust freezing in processed meat: A fully coupled solid–fluid approach. Numer. Heat Transf. Part A Appl. 2020, 78, 378–391. [Google Scholar] [CrossRef]
- Chasiotis, V.K.; Tzempelikos, D.A.; Filios, A.E.; Moustris, K.P. Artificial neural network modelling of moisture content evolution for convective drying of cylindrical quince slices. Comput. Electron. Agric. 2020, 172, 105074. [Google Scholar] [CrossRef]
- Malekjani, N.; Jafari, S.M. Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends Food Sci. Technol. 2018, 78, 206–223. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Muraglia, M.; Fino, V.; Curci, F.; Fracchiolla, G.; Corbo, F.F.R. Overview on Innovative Packaging Methods Aimed to Increase the Shelf-Life of Cook-Chill Foods. Foods 2021, 10, 2086. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Zamora, W.; Tirado-Kulieva, A.; Ricse, D. Computational Applications for the Evaluation and Simulation of the Thermal Treatment of Canned Foods. In A Glance at Food Processing Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Khan, S.U.; Ali, I. Convergence and error analysis of a spectral collocation method for solving system of nonlinear Fredholm integral equations of second kind. Comput. Appl. Math. 2019, 38, 125. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Applications of Legendre spectral collocation method for solving system of time delay differential equations. Adv. Mech. Eng. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate. Chaos Solitons Fract. 2020, 138, 110008. [Google Scholar] [CrossRef]
- Saleem, M.T.; Ali, I. Numerical Simulations of Turing Patterns in a Reaction- diffusion Model with the Chebyshev Spectral Method. Eur. Phys. J. Plus 2018, 133, 399. [Google Scholar] [CrossRef]
- Raza, N.; Zainab, U.; Araci, S.; Esi, A. Identities involving 3-variable Hermite polynomials arising from umbral method. Adv. Differ. Equ. 2020, 2020, 640. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Esi, A.; Araci, S. A Note on the (p, q)-Hermite Polynomials. Appl. Math. Inf. Sci. 2018, 12, 227–231. [Google Scholar] [CrossRef]
- Khan, W.A.; Araci, S.; Acikgoz, M.; Esi, A. Laguerre-based Hermite-Bernoulli polynomials associated with bilateral series. Tbilisi Math. J. 2018, 11, 111–121. [Google Scholar]
- Pfeiffer, H.P.; Kidder, L.E.; Scheel, M.A.; Teukolsky, S.A. A multidomain spectral method for solving elliptic equations. Comput. Phys. Commun. 2003, 152, 253–273. [Google Scholar] [CrossRef] [Green Version]
- Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Costa, B. Spectral methods for partial differential equations. Cubo-Revista de Matemática 2004, 6, 1–32. [Google Scholar]
- Heideman, M.T.; Johnson, D.H.; Burrus, C.S. Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 1985, 34, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Van Loan, C. Computational Frameworks for the Fast Fourier Transform; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- Frigo, M.; Johnson, S.G. A Modified Split-Radix FFT With Fewer Arithmetic Operations. IEEE Trans. Signal Process. 2007, 55, 111–119. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Trefethen, L.N. Spectral methods in MATLAB; SIAM: Philadelphia, USA, 2000. [Google Scholar]
- Canuto, H.; Quaterolli, Z. Spectral Methods; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zhang, X. Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm–Liouville problems. Appl. Math. Comput. 2010, 217, 2266–2276. [Google Scholar] [CrossRef]
- Taher, A.H.S.; Malek, A.; Momeni-Masuleh, S.H. Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm–Liouville problems. Appl. Math. Model. 2013, 37, 4634–4642. [Google Scholar] [CrossRef]
Error | ||||
---|---|---|---|---|
0 | ||||
0 | ||||
0 |
Error | ||||
---|---|---|---|---|
0 | ||||
0 | ||||
0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Saleem, M.T. Applications of Orthogonal Polynomials in Simulations of Mass Transfer Diffusion Equation Arising in Food Engineering. Symmetry 2023, 15, 527. https://doi.org/10.3390/sym15020527
Ali I, Saleem MT. Applications of Orthogonal Polynomials in Simulations of Mass Transfer Diffusion Equation Arising in Food Engineering. Symmetry. 2023; 15(2):527. https://doi.org/10.3390/sym15020527
Chicago/Turabian StyleAli, Ishtiaq, and Maliha Tehseen Saleem. 2023. "Applications of Orthogonal Polynomials in Simulations of Mass Transfer Diffusion Equation Arising in Food Engineering" Symmetry 15, no. 2: 527. https://doi.org/10.3390/sym15020527