Extension of the Reproducing Kernel Hilbert Space Method’s Application Range to Include Some Important Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- 1.
- 2.
RKHS Method
- ; is given by (2).
- The set is dense in
- means the adjoint of
- 1.
- Let us estimate the following:
- 2.
- Doing the same thing to the derivative, we get
3. Convergence Analysis
- 1.
- converges to
- 2.
- 1.
- We haveConsequently
- 2.
- Taking the limit in (18), we obtainNow, we know that,
4. Numerical Experiments
- Step 1: Fix
- Step 2: Set
- Step 3: Calculate the coefficients using (11);
- Step 4: Set
- Step 5: Choose an initial guess
- Step 6: Set
- Step 7: Set
- Step 8:
- Step 9: If set Go to step 7. Else stop.
- where and n is the number of collocation points.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Diffrential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: San Diego, CA, USA, 2006. [Google Scholar]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real-world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Akgül, A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 2018, 114, 478–482. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 2004, 154, 621–640. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D.; Fokas, A.S. Solving PDEs of fractional order using the unified transform method. Appl. Math. Comput. 2018, 339, 738–749. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.-H.; Dai, C.-Q. Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrödinger equation. Chin. Phys. Lett. 2021, 38, 090501. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, Y.-L.; Wang, X.-T. Lie symmetry analysis of the time fractional generalized KdV equations with variable coefficients. Symmetry 2019, 11, 1281. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Lin, Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space; Nova Science Publishers Inc.: New York, NY, USA, 2009. [Google Scholar]
- Chen, S.-B.; Soradi-Zeid, S.; Dutta, H.; Mesrizadeh, M.; Jahanshahi, H.; Chu, Y.-M. Reproducing kernel Hilbert space method for nonlinear second order singularly perturbed boundary value problems with time-delay. Chaos Solitons Fractals 2021, 144, 110674. [Google Scholar] [CrossRef]
- Dou, H.-X.; Deng, L.-J. A proximal algorithm with convergence guarantee for a nonconvex minimization problem based on reproducing kernel Hilbert space. Symmetry 2021, 13, 2393. [Google Scholar] [CrossRef]
- Yildirim, E.N.; Akgül, A.; Inc, M. Reproducing kernel method for the solutions of non-linear partial differential equations. Arab J. Basic Appl. Sci. 2018, 28, 80–86. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Osman, M.S.; Park, C.; Lee, J.R.; Alsulam, H.; Alhodaly, M. Development of the reproducing kernel Hilbert space algorithm for numerical pointwise solution of the time-fractional nonlocal reaction-diffusion equation. Alex. Eng. J. 2022, 61, 10539–10550. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Sahihi, H. Reproducing kernel method to solve fractional delay differential equations. Appl. Math. Comput. 2021, 400, 126095. [Google Scholar] [CrossRef]
- Attia, N.; Akgül, A.; Seba, D.; Nour, A. An efficient numerical technique for a biological population model of fractional order. Chaos Solitons Fractals 2021, 141, 110349. [Google Scholar] [CrossRef]
- Li, X.; Wu, B. A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions. Appl. Math. Lett. 2018, 86, 194–199. [Google Scholar] [CrossRef]
- Du, H.; Chen, Z.; Yang, T. A stable least residue method in reproducing kernel space for solving a nonlinear fractional integro-differential equation with a weakly singular kernel. Appl. Numer. Math. 2020, 157, 210–222. [Google Scholar] [CrossRef]
- Du, H.; Chen, Z.; Yang, T. A meshless method in reproducing kernel space for solving variable-order time fractional advection–diffusion equations on arbitrary domain. Appl. Numer. Math. 2021, 116, 107014. [Google Scholar] [CrossRef]
- Hasan, S.; Maayah, B.; Bushnaq, S.; Momani, S. A modified reproducing kernel Hilbert space method for solving fuzzy fractional integro-differential equations. Bol. Soc. Paran. Mat. 2023, 41, 1–16. [Google Scholar] [CrossRef]
- Babolian, E.; Javadi, S.; Moradi, E. Error analysis of reproducing kernel Hilbert space method for solving functional integral equations. J. Comput. Appl. Math. 2016, 300, 300–311. [Google Scholar] [CrossRef]
t | Exact Solution | RKHSM | Absolute Error |
---|---|---|---|
0 | 0 | 0 | 0 |
1 |
Absolute Errors | |||
---|---|---|---|
t | |||
0 | 0 | ||
1 |
t | Exact Solution | RKHSM | Absolute Error |
---|---|---|---|
0 | 0 | 0 | 0 |
1 |
Absolute Errors | |||
---|---|---|---|
t | |||
0 | 0 | ||
1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, N.; Akgül, A.; Alqahtani, R.T. Extension of the Reproducing Kernel Hilbert Space Method’s Application Range to Include Some Important Fractional Differential Equations. Symmetry 2023, 15, 532. https://doi.org/10.3390/sym15020532
Attia N, Akgül A, Alqahtani RT. Extension of the Reproducing Kernel Hilbert Space Method’s Application Range to Include Some Important Fractional Differential Equations. Symmetry. 2023; 15(2):532. https://doi.org/10.3390/sym15020532
Chicago/Turabian StyleAttia, Nourhane, Ali Akgül, and Rubayyi T. Alqahtani. 2023. "Extension of the Reproducing Kernel Hilbert Space Method’s Application Range to Include Some Important Fractional Differential Equations" Symmetry 15, no. 2: 532. https://doi.org/10.3390/sym15020532
APA StyleAttia, N., Akgül, A., & Alqahtani, R. T. (2023). Extension of the Reproducing Kernel Hilbert Space Method’s Application Range to Include Some Important Fractional Differential Equations. Symmetry, 15(2), 532. https://doi.org/10.3390/sym15020532