Copula Approach for Dependent Competing Risks of Generalized Half-Logistic Distributions under Accelerated Censoring Data
Abstract
:1. Introduction
2. Methodology
- 1.
- The number of I/Us which is failed with respect to stress level and cause j is denoted by
- 2.
- The number of I/Us which is failed with respect cause j is denoted by
- 3.
- For any stress levels , only two dependence causes of failure are exist.
- 4.
- The time-to-failure respected to stress level and the cause of failure j distribute with GHL distribution with scale parameters and shape parameter with CDFs given byThe corresponding PDFs
- 5.
- The shape parameters is common for stress levels and different for causes of failure.
- 6.
- The joint survival function under BPC is given by
- 7.
- The scale parameters is log-linear function of the stress function of the j-th competing failure mode
3. Result and Discussion
3.1. Copula Function
3.2. The Point ML Estimate
3.3. Approximate Confidence Intervals (ACIs)
3.4. Bootstrap Confidence Intervals (BCIs)
- Step 1:
- For given , , stress levels and and two censoring schemes and with the original competing risks type-II PCS compute and Then, the estimate values of the model parameters are computed.
- Step 2:
- Based on , and using the algorithms given by Balakrishnan and Sandhu [42], we generate two type-II PC samples of size from GHL distributions with parameters (, and (, respectively. The competing risks type-II PC sample is difened by ( 1, 2, …,
- Step 3:
- Based on , and generate two type-II PC samples of size from GHL distributions with parameters (, and (, respectively. The competing risks type-II PC sample is difened by ( 1, 2, …,
- Step 4:
- From two Step 2 and 3 the joint sample is formulated.
- Step 5:
- Based on compute the MLE estimate
- Bootstrap-p confidence interval (Boot-P CIs)
- Bootstrap-t confidence intervals (Boot-t CIs)
3.5. Reliability Estimation
3.6. Simulation Study
- 1.
- The proposed model and the proposed methods of estimation serve well for all of the parameter values and censoring schemes.
- 2.
- The values of MSEs decrease when the sample size and affected sample size increase.
- 3.
- The results show that the value of the copula parameter has a small MSEs than value . Hence, a stronger dependent serves better than a weaker dependent.
- 4.
- Finally, the coverage percentages of ACIs are always less than the nominal level when the sample size is less or equivalent to 60. For a sample size as large as 70, the coverage percentages of ACIs improve, which can maintain the pre-fixed nominal level.
- 5.
- Bootstrap-t serve well than Bootstarp-p and MLE.
() | () | Scheme | ||||||
---|---|---|---|---|---|---|---|---|
(25,10) | (25,10) | 0.0873 | 0.1242 | 0.3214 | 0.5621 | 0.2741 | 0.2987 | |
(25,20) | (25,20) | 0.0745 | 0.1115 | 0.3098 | 0.5428 | 0.2622 | 0.2777 | |
(50,20) | (50,20) | 0.0768 | 0.1103 | 0.3111 | 0.5414 | 0.2611 | 0.2792 | |
(50,20) | (50,20) | 0.0722 | 0.1089 | 0.3102 | 0.5399 | 0.2601 | 0.2774 | |
(50,20) | (50,35) | 0.0715 | 0.1045 | 0.3111 | 0.5389 | 0.2541 | 0.2730 | |
(50,35) | (50,20) | 0.0692 | 0.1093 | 0.3045 | 0.5352 | 0.2613 | 0.2771 | |
(80,40) | (80,40) | 0.0601 | 0.0875 | 0.3003 | 0.5211 | 0.2492 | 0.2665 | |
(80,40) | (80,40) | 0.0614 | 0.0879 | 0.3012 | 0.5209 | 0.2489 | 0.2671 | |
(80,60) | (80,40) | 0.0541 | 0.0869 | 0.2985 | 0.5154 | 0.2494 | 0.2653 | |
(80,40) | (80,60) | 0.0608 | 0.0833 | 0.3007 | 0.5207 | 0.2448 | 0.2618 | |
(80,60) | (80,60) | 0.0518 | 0.0782 | 0.2945 | 0.5105 | 0.2399 | 0.2559 | |
() | () | Scheme | Method | ||||||
---|---|---|---|---|---|---|---|---|---|
(25,10) | (25,10) | MLE | 0.87 | 0.89 | 0.86 | 0.88 | 0.88 | 0.89 | |
Boot-p | 0.87 | 0.88 | 0.89 | 0.89 | 0.86 | 0.89 | |||
Boot-t | 0.89 | 0.89 | 0.90 | 0.90 | 0.89 | 0.90 | |||
(25,20) | (25,20) | MLE | 0.89 | 0.91 | 0.88 | 0.89 | 0.91 | 0.91 | |
Boot-p | 0.89 | 0.88 | 0.91 | 0.89 | 0.79 | 0.94 | |||
Boot-t | 0.93 | 0.92 | 0.92 | 0.92 | 0.93 | 0.94 | |||
(50,20) | (50,20) | MLE | 0.91 | 0.90 | 0.89 | 0.88 | 0.92 | 0.90 | |
Boot-p | 0.91 | 0.88 | 0.89 | 0.90 | 0.91 | 0.92 | |||
Boot-t | 0.94 | 0.93 | 0.92 | 0.92 | 0.91 | 0.93 | |||
(50,20) | (50,20) | MLE | 0.91 | 0.91 | 0.89 | 0.91 | 0.91 | 0.91 | |
Boot-p | 0.89 | 0.89 | 0.90 | 0.92 | 0.92 | 0.92 | |||
Boot-t | 0.93 | 0.93 | 0.95 | 0.92 | 0.92 | 0.92 | |||
(50,20) | (50,35) | MLE | 0.91 | 0.90 | 0.92 | 0.90 | 0.93 | 0.92 | |
Boot-p | 0.91 | 0.91 | 0.89 | 0.92 | 0.90 | 0.91 | |||
Boot-t | 0.93 | 0.93 | 0.94 | 0.94 | 0.91 | 0.92 | |||
(50,35) | (50,20) | MLE | 0.90 | 0.91 | 0.89 | 0.90 | 0.91 | 0.91 | |
Boot-p | 0.90 | 0.91 | 0.88 | 0.91 | 0.92 | 0.91 | |||
Boot-t | 0.94 | 0.93 | 0.93 | 0.92 | 0.92 | 0.93 | |||
(80,40) | (80,40) | MLE | 0.91 | 0.92 | 0.90 | 0.92 | 0.91 | 0.92 | |
Boot-p | 0.91 | 0.90 | 0.92 | 0.96 | 0.90 | 0.92 | |||
Boot-t | 0.94 | 0.93 | 0.92 | 0.94 | 0.92 | 0.93 | |||
(80,40) | (80,40) | MLE | 0.92 | 0.92 | 0.91 | 0.91 | 0.94 | 0.92 | |
Boot-p | 0.91 | 0.92 | 0.93 | 0.91 | 0.92 | 0.91 | |||
Boot-t | 0.91 | 0.92 | 0.92 | 0.92 | 0.94 | 0.90 | |||
(80,60) | (80,40) | MLE | 0.92 | 0.92 | 0.92 | 0.94 | 0.91 | 0.94 | |
Boot-p | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.93 | |||
Boot-t | 0.92 | 0.92 | 0.95 | 0.91 | 0.92 | 0.94 | |||
(80,40) | (80,60) | MLE | 0.90 | 0.90 | 0.92 | 0.91 | 0.95 | 0.92 | |
Boot-p | 0.91 | 0.93 | 0.91 | 0.90 | 0.94 | 0.90 | |||
Boot-t | 0.94 | 0.95 | 0.92 | 0.92 | 0.92 | 0.93 | |||
(80,60) | (80,60) | MLE | 0.91 | 0.97 | 0.91 | 0.93 | 0.91 | 0.92 | |
Boot-p | 0.92 | 0.90 | 0.92 | 0.94 | 0.92 | 0.91 | |||
Boot-t | 0.94 | 0.92 | 0.95 | 0.93 | 0.95 | 0.94 |
() | () | Scheme | ||||||
---|---|---|---|---|---|---|---|---|
(25,10) | (25,10) | 0.0825 | 0.1200 | 0.3162 | 0.5572 | 0.2741 | 0.2987 | |
(25,20) | (25,20) | 0.0701 | 0.1072 | 0.3045 | 0.5401 | 0.2584 | 0.2719 | |
(50,20) | (50,20) | 0.0725 | 0.1055 | 0.3061 | 0.5382 | 0.2562 | 0.2701 | |
(50,20) | (50,20) | 0.0682 | 0.1051 | 0.349 | 0.5354 | 0.2571 | 0.2748 | |
(50,20) | (50,35) | 0.0677 | 0.1002 | 0.349 | 0.5341 | 0.2500 | 0.2701 | |
(50,35) | (50,20) | 0.0651 | 0.1048 | 0.3007 | 0.5313 | 0.2582 | 0.2729 | |
(80,40) | (80,40) | 0.0571 | 0.0824 | 0.2890 | 0.5142 | 0.2433 | 0.2619 | |
(80,40) | (80,40) | 0.0572 | 0.0841 | 0.2975 | 0.5162 | 0.2417 | 0.2614 | |
(80,60) | (80,40) | 0.0508 | 0.0821 | 0.2929 | 0.5118 | 0.2451 | 0.2614 | |
(80,40) | (80,60) | 0.0555 | 0.0800 | 0.2952 | 0.5144 | 0.2403 | 0.2581 | |
(80,60) | (80,60) | 0.0488 | 0.0728 | 0.2901 | 0.5044 | 0.2362 | 0.2511 | |
() | () | Scheme | Method | ||||||
---|---|---|---|---|---|---|---|---|---|
(25,10) | (25,10) | MLE | 0.88 | 0.89 | 0.87 | 0.88 | 0.86 | 0.90 | |
Boot-p | 0.87 | 0.89 | 0.88 | 0.88 | 0.86 | 0.89 | |||
Boot-t | 0.90 | 0.89 | 0.90 | 0.91 | 0.89 | 0.90 | |||
(25,20) | (25,20) | MLE | 0.89 | 0.90 | 0.90 | 0.89 | 0.91 | 0.90 | |
Boot-p | 0.89 | 0.88 | 0.90 | 0.89 | 0.90 | 0.90 | |||
Boot-t | 0.91 | 0.92 | 0.90 | 0.91 | 0.91 | 0.93 | |||
(50,20) | (50,20) | MLE | 0.90 | 0.90 | 0.89 | 0.90 | 0.91 | 0.91 | |
Boot-p | 0.91 | 0.90 | 0.89 | 0.90 | 0.90 | 0.92 | |||
Boot-t | 0.92 | 0.93 | 0.96 | 0.92 | 0.91 | 0.94 | |||
(50,20) | (50,20) | MLE | 0.90 | 0.90 | 0.89 | 0.90 | 0.91 | 0.91 | |
Boot-p | 0.89 | 0.90 | 0.91 | 0.92 | 0.91 | 0.90 | |||
Boot-t | 0.92 | 0.91 | 0.89 | 0.96 | 0.93 | 0.92 | |||
(50,20) | (50,35) | MLE | 0.90 | 0.90 | 0.89 | 0.90 | 0.91 | 0.91 | |
Boot-p | 0.91 | 0.90 | 0.89 | 0.92 | 0.91 | 0.90 | |||
Boot-t | 0.93 | 0.92 | 0.94 | 0.92 | 0.91 | 0.95 | |||
(50,35) | (50,20) | MLE | 0.88 | 0.90 | 0.89 | 0.89 | 0.91 | 0.90 | |
Boot-p | 0.90 | 0.91 | 0.90 | 0.91 | 0.91 | 0.90 | |||
Boot-t | 0.94 | 0.92 | 0.93 | 0.94 | 0.92 | 0.91 | |||
(80,40) | (80,40) | MLE | 0.92 | 0.93 | 0.90 | 0.96 | 0.92 | 0.92 | |
Boot-p | 0.91 | 0.90 | 0.90 | 0.96 | 0.92 | 0.93 | |||
Boot-t | 0.96 | 0.93 | 0.92 | 0.96 | 0.92 | 0.93 | |||
(80,40) | (80,40) | MLE | 0.93 | 0.92 | 0.92 | 0.90 | 0.94 | 0.93 | |
Boot-p | 0.90 | 0.92 | 0.91 | 0.90 | 0.92 | 0.91 | |||
Boot-t | 0.92 | 0.92 | 0.93 | 0.92 | 0.94 | 0.92 | |||
(80,60) | (80,40) | MLE | 0.95 | 0.90 | 0.92 | 0.94 | 0.91 | 0.90 | |
Boot-p | 0.91 | 0.92 | 0.92 | 0.91 | 0.91 | 0.93 | |||
Boot-t | 0.93 | 0.92 | 0.94 | 0.91 | 0.92 | 0.94 | |||
(80,40) | (80,60) | MLE | 0.93 | 0.92 | 0.92 | 0.94 | 0.95 | 0.93 | |
Boot-p | 0.91 | 0.92 | 0.91 | 0.90 | 0.92 | 0.90 | |||
Boot-t | 0.94 | 0.92 | 0.93 | 0.92 | 0.92 | 0.91 | |||
(80,60) | (80,60) | MLE | 0.94 | 0.97 | 0.92 | 0.93 | 0.92 | 0.94 | |
Boot-p | 0.91 | 0.90 | 0.92 | 0.92 | 0.92 | 0.92 | |||
Boot-t | 0.93 | 0.92 | 0.92 | 0.93 | 0.95 | 0.94 |
3.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, W. Accelerated Testing: Statistical Models, Test Plans and Data Analysis; Wiley: NewYork, NY, USA, 2004. [Google Scholar]
- Bagdonavicius, V.; Nikulin, M. Accelerated Life Models: Modeling and Statistical Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Kim, C.M.; Bai, D.S. Analysis of accelerated life test data under two failure modes. International Journal of Reliability. Qual. Saf. Eng. 2002, 9, 111–125. [Google Scholar] [CrossRef]
- Ismail, A.A.; Abdel-Ghalyb, A.A.; El-Khodary, E.H. Optimum constant-stress life test plans for Pareto distribution under type-I censoring. J. Stat. Comput. Simul. 2011, 81, 1835–1845. [Google Scholar] [CrossRef]
- Miller, R.; Nelson, W.B. Optimum simple step-stress plans for accelerated life testing. IEEE Trans. Reliab. 1983, 32, 59–65. [Google Scholar] [CrossRef]
- Gouno, E.; Sen, A.; Balakrishnan, N. Optimal step-stress test under progressive Type-I censoring. IEEE Trans. Reliab. 2004, 53, 388–393. [Google Scholar] [CrossRef]
- Fan, T.H.; Wang, W.L.; Balakrishnan, N. Exponential progressive step-stress life-testing with link function based on Box Cox transformation. J. Stat. Plan. Inference 2008, 138, 2340–2354. [Google Scholar] [CrossRef]
- Tang, Y.; Guani, Q.; Xu, P.; Xu, H. Optimum design for type-I step-stress accelerated life tests of two-parameter Weibull distributions. Commun. Stat. Theory Methods 2012, 41, 3863–3877. [Google Scholar] [CrossRef]
- Almarashi, A.M.; Abd-Elmougod, G.A. Accelerated Competing Risks Model from Gompertz Lifetime Distributions with Type-II Censoring Scheme. Therm. Sci. 2020, 24, S165–S175. [Google Scholar] [CrossRef]
- Wang, R.; Fei, H. Statistical inference of Weibull distribution for tampered failure rate model in progressive stress accelerated life testing. J. Syst. Sci. Complex. 2004, 17, 237–243. [Google Scholar]
- Abdel-Hamid, A.H.; Al-Hussaini, E.K. Progressive stress accelerated life tests under nite mixture models. Metrika 2007, 66, 213–231. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring—Theory, Methods, and Applications; Birkhauser: Boston, MA, USA, 2000. [Google Scholar]
- Cox, D.R. The analysis of exponentially distributed lifetimes with two types of failures. J. R. Soc. 1959, 21, 411–421. [Google Scholar]
- David, H.A.; Moeschberger, M.L. The Theory of Competing Risks; Grin: London, UK, 1978. [Google Scholar]
- Crowder, M.J. Classical Competing Risks; Chapman and Hall: London, UK, 2001. [Google Scholar]
- Balakrishnan, N.; Han, D. Exact inference for a simple step-stress model with competing risks for failure from exponential distribution under Type-II censoring. J. Stat. Plan. Inference 2008, 138, 4172–4186. [Google Scholar] [CrossRef]
- Modhesh, A.A.; Abd-Elmougod, G.A. Analysis of Progressive First-Failure-Censoring in the Burr XII Model for Competing Risks Data. Am. J. Theor. Appl. Stat. 2015, 4, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Bakoban, R.A.; Abd-Elmougod, G.A. MCMC in analysis of progressively first failure censored competing risks data for Gompertz model. J. Comput. Theor. Nanosci. 2016, 13, 6662–6670. [Google Scholar] [CrossRef]
- Ganguly, A.; Kundu, D. Analysis of simple step-stress model in presence of competing risks. J. Stat. Comput. Simul. 2016, 86, 1989–2006. [Google Scholar] [CrossRef]
- Algarni, A.; Almarashi, A.M.; Abd-Elmougod, G. Statistical analysis of competing risks lifetime data from Nadarajaha and Haghighi distribution under type-II censoring. J. Intell. Fuzzy Syst. 2020, 38, 2591–2601. [Google Scholar]
- Abushal, T.A.; Soliman, A.A.; Abd-Elmougod, G.A. Statistical inferences of Burr XII lifetime models under joint Type-1 competing risks samples. J. Math. 2021, 2021, 9553617. [Google Scholar] [CrossRef]
- Alghamdi, A.S. Partially Accelerated Model for Analyzing Competing Risks Data from Gompertz Population under Type-I Generalized Hybrid Censoring Scheme. Complexity 2021, 2021, 9925094. [Google Scholar] [CrossRef]
- Alghamdia, A.S.; Elhafiana, M.; Aljohanib, H.M.; Abd-Elmougod, G.A. Estimations of accelerated Lomax lifetime distribution with a dependent competing risks model under type-I generalized hybrid censoring scheme. Alex. Eng. J. 2021, 61, 6489–6499. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Abd-Elmougod, G.A.; Kundu, D.; Marin, M. Statistical Inference of Jointly Type-II Lifetime Samples under Weibull Competing Risks Models. Symmetry 2022, 14, 701. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I. A multivariate exponential distribution. J. Am. Assoc. 1967, 62, 30–41. [Google Scholar] [CrossRef]
- Balakrishnan, N. Order statistics from the half logistic distribution. J. Stat. Comput. Simul. 1985, 20, 287–309. [Google Scholar] [CrossRef]
- Balakrsihnan, N.; Hossain, A. Inference for the Type-II generalized logistic distribution under progressive Type-II censoring. J. Stat. Comput. Simul. 2007, 77, 1013–1031. [Google Scholar] [CrossRef]
- Ramakrsihnan, V. Generalizations to Half Logistic Distribution and Related Inference. Ph.D. Thesis, Acharya Nagarjuna University (AP), Guntur, India.
- Arora, S.H.; Bhimani, G.C.; Patel, M.N. Some results on maximum likelihood estimators of parameters of generalized half logistic distribution under Type-I progressive censoring with changing. Int. J. Contemp. Math. Sci. 2010, 5, 685–698. [Google Scholar]
- Kim, Y.; Kang, S.B.; Seo, J.I. Bayesian estimation in the generalized half logistic distribution under progressively Type II censoring. J. Korean Data Inf. Sci. Soc. 2011, 22, 977–987. [Google Scholar]
- Chaturvedi, A.; Kang, S.-B.; Pathak, A. Estimation and testing procedures for the reliability functions of generalized half logistic distribution. J. Korean Stat. Soc. 2016, 45, 314–328. [Google Scholar] [CrossRef]
- Almarashi, A.M. Parameters Estimation for Constant-Stress Partially Accelerated Life Tests of Generalized Half-Logistic Distribution Based on Progressive Type-II Censoring. REVSTAT 2020, 18, 437–452. [Google Scholar]
- Sklar, A. Functions de repartition a n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 1959, 8, 229–231. [Google Scholar]
- Nelsen, R. Some properties of Schur-constant survivalmodels and their copulas. Braz. J. Probab. Stat. 2005, 19, 179–190. [Google Scholar]
- Zhang, X.P.; Zhong, J.; Xun, S.; Chun, C.; Zhang, H.; Wang, Y.S. Statistical inference of accelerated life testing with dependent competing failures based on copula theory. IEEE Trans. Reliab. 2014, 63, 764–780. [Google Scholar] [CrossRef]
- Meeker, W.Q.; Escobar, L.A. Statistical Methods for Reliability Data; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Wang, L.; Tripathi, Y.M.; Lodhi, C. Inference for Weibull competing risks model with partially observed failure causes under generalized progressive hybrid censoring. J. Comput. Appl. Math. 2020, 368, 112537. [Google Scholar] [CrossRef]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and their Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall: New York, NY, USA, 1993. [Google Scholar]
- Hall, P. Theoretical comparison of bootstrap condence intervals. Ann. Stat. 1988, 16, 927–953. [Google Scholar]
- Efron, B. The jackknife, the bootstrap and other resampling plans. In CBMS-NSF Regional Conference Series in Applied Mathematics; SIAM: Phiadelphia, PA, USA, 1982; p. 38. [Google Scholar]
- Balakrishnan, N.S.; Sandhu, R.A. A simple simulation algorithm for generating progressively type-II censored samples. Am. Stat. 1995, 49, 229–230. [Google Scholar]
0.0512 | 0.3533 | 0.5253 | 0.5297 | 0.7615 | 0.7737 | 0.7941 | 1.2752 | 1.3143 | 1.8658 | |
1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2.0817 | 2.6984 | 2.7525 | 2.8935 | 2.9355 | 3.0838 | 3.9839 | 4.3776 | 4.4603 | 4.9003 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | |
5.0907 | 5.1854 | 5.2346 | 5.2654 | 5.4079 | 5.8034 | 5.9266 | 5.9658 | 6.7407 | 7.1575 | |
2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
0.0793 | 0.1826 | 0.2967 | 0.3620 | 0.5833 | 0.7460 | 0.8963 | 1.0052 | 1.0378 | 1.1951 | |
2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | |
1.1955 | 1.3332 | 1.4629 | 1.5213 | 1.5498 | 1.7281 | 1.8321 | 1.9088 | 2.0058 | 2.2701 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2.3247 | 2.3734 | 2.4229 | 2.8080 | 3.5315 | 3.7945 | 3.9892 | 4.1753 | 4.1884 | 7.7951 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
Exact | MLE | 95% ACI | 95% Boot-p | 95%Boot-t | ||||
---|---|---|---|---|---|---|---|---|
0.2000 | 0.0792 | (0.0094, 0.6644) | (0.0478, 1.4254) | (0.0113, 0.5478) | ||||
0.3000 | 0.4475 | (0.1034, 1.9365) | (0.1220, 2.8412) | (0.0047, 0.8745) | ||||
0.9517 | 0.6328 | (0.0878, 4.5614) | (0.2345, 4.9994) | (0.2473, 2.9982) | ||||
1.3503 | 2.8562 | (0.8957, 9.1080) | (0.7845, 13.1457) | (0.7412, 5.6547) | ||||
0.6093 | 0.2959 | (0.0421, 2.0789) | (0.1240, 4.2145) | (0.2314, 1.9879) | ||||
1.0030 | 4.8317 | (0.9872, 20.3486) | (0.4521, 22.3874) | (0.5462, 10.8754) |
t | t | ||||
---|---|---|---|---|---|
0.5 | 0.916947 | 3.0 | 0.515836 | ||
1.0 | 0.831423 | 3.5 | 0.451519 | ||
1.5 | 0.746312 | 4.0 | 0.394082 | ||
2.0 | 0.664164 | 4.5 | 0.343289 | ||
2.5 | 0.586922 | 5.0 | 0.298688 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Essa, L.A.; Soliman, A.A.; Abd-Elmougod, G.A.; Alshanbari, H.M. Copula Approach for Dependent Competing Risks of Generalized Half-Logistic Distributions under Accelerated Censoring Data. Symmetry 2023, 15, 564. https://doi.org/10.3390/sym15020564
Al-Essa LA, Soliman AA, Abd-Elmougod GA, Alshanbari HM. Copula Approach for Dependent Competing Risks of Generalized Half-Logistic Distributions under Accelerated Censoring Data. Symmetry. 2023; 15(2):564. https://doi.org/10.3390/sym15020564
Chicago/Turabian StyleAl-Essa, Laila A., Ahmed A. Soliman, Gamal A. Abd-Elmougod, and Huda M. Alshanbari. 2023. "Copula Approach for Dependent Competing Risks of Generalized Half-Logistic Distributions under Accelerated Censoring Data" Symmetry 15, no. 2: 564. https://doi.org/10.3390/sym15020564