A New Comprehensive Subclass of Analytic Bi-Univalent Functions Related to Gegenbauer Polynomials
Abstract
:1. Introduction
2. Preliminaries
3. Coefficient Bounds of the Subclass
4. Fekete–Szegö Problem for the Subclass
5. Corollaries and Consequences
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Legendre, A. Recherches sur Laattraction des Sphéroides Homogénes; Mémoires Présentes par Divers Savants a laAcadémie des Sciences de laInstitut de France; Goethe Universitat: Paris, France, 1785; Volume 10, pp. 411–434. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: Singapore, 1953. [Google Scholar]
- Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer Polynomials and bi-univalent Functions. Palest. J. Math. 2021, 10, 625–632. [Google Scholar]
- Quesne, C. Disentangling q-exponentials: A general approach. Int. J. Theor. Phys. 2004, 43, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Duren, P. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Miller, S.; Mocanu, P. Differential Subordination: Theory and Applications; CRC Press: New York, NY, USA, 2000. [Google Scholar]
- Bulut, S. Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad J. Math. 2013, 43, 59–65. [Google Scholar]
- Frasin, B. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 2014, 693908. [Google Scholar]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboaca, T. An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar]
- Yousef, F.; Frasin, B.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Attiya, A.A.; Ibrahim, R.W.; Albalahi, A.M.; Ali, E.E.; Bulboaca, T. A Differential Operator Associated with q-Raina Function. Symmetry 2022, 14, 1518. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.; Clunie, J. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute on Theoretical Approaches to Scheduling Problems, Durham, UK, 6–17 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |ξ| < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.; Taha, T. On some classes of bi-univalent functions. Math. Anal. Appl. 1988, 53–60. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficicent estimates for bi-univalent functions. Chin. Ann. Math. Ser. 1984, 5, 559–568. [Google Scholar]
- Srivastava, H.; Mishra, A.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.S. Extremal problems for analytic functions with positive real part and applications. Trans. Am. Math. Soc. 1963, 106, 236–253. [Google Scholar] [CrossRef]
- Babalola, K.O. On λ-pseudo-starlike functions. J. Class. Anal. 2013, 3, 137–147. [Google Scholar] [CrossRef]
- Ezrohi, T.G. Certain estimates in special classes of univalent functions in the unitcircle. Dopovidi Akad. Nauk. Ukrajins Koji RSR 1965, 2, 984–988. [Google Scholar]
- Chen, M.P. On functions satisfying . Tamkang J. Math. 1974, 5, 231–234. [Google Scholar]
- Singh, R. On Bazilevi c Functions. Proc. Am. Math. Soc. 1973, 38, 261–271. [Google Scholar]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al, M. A generalization of Gegenbauer polynomials and bi-univalent functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Al Sharefeen, R.I. Applications of Neutrosophic q-Poisson Distribution Series for subclass of Analytic Functions and bi–univalent functions. Mathematics 2023, 11, 868. [Google Scholar] [CrossRef]
- Seoudy, T.M. Convolution Results and Fekete–Szegö Inequalities for Certain Classes of Symmetric-Starlike and Symmetric-Convex Functions. J. Math. 2022, 2022, 57–73. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete—Szegö problems for certain subclasses of analytic functions defined by differential operator involving-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020, 8459405. [Google Scholar] [CrossRef] [Green Version]
- Alsoboh, A.; Darus, M. On Fekete-Szego Problem Associated with q-derivative Operator. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1212, p. 012003. [Google Scholar]
- Amourah, A.; Al-Hawary, T.; Frasin, B.A. Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order α + iβ. Afr. Mat. 2021, 32, 1059–1066. [Google Scholar] [CrossRef]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, B.; Shaba, T.; Ro, J.; Araci, S.; Khan, M. Applications of q-Hermite Polynomials to Subclasses of Analytic and Bi-Univalent Functions. Fractal Fract. 2022, 6, 420. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of-Derivative Operator to the Subclass of Bi-Univalent Functions Involving-Chebyshev Polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Khan, B.; Khan, S.; Ro, J.S.; Araci, S.; Khan, N.; Khan, M.G. Inclusion Relations for Dini Functions Involving Certain Conic Domains. Fractal Fract. 2022, 6, 118. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. New subclass of analytic functions defined by q-differential operator with respect to k-symmetric points. Int. J. Math. Comp. Sci. 2019, 14, 761–773. [Google Scholar]
- Yousef, F.; Alroud, S.; Illafe, M. New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Anal. Math. Phys. 2021, 11, 58. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Boletín Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Shammaky, A.E.; Frasin, B.A.; Seoudy, T.M. Subclass of Analytic Functions Related with Pascal Distribution Series. Mathematics 2022, 2022, 8355285. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M. Admissible classes of multivalent functions associated with an integral operator. Ann. Univ. Mariae Curie-Sklodowska Sect. A Math. 2019, 73, 57–73. [Google Scholar]
- Attiya, A.A.; Seoudy, T.M.; Albaid, A. Third-Order Differential Subordination for Meromorphic Functions Associated with Generalized Mittag-Leffler Function. Fractal Fract. 2023, 7, 175. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. Certain subclass of meromorphic functions involving q-Ruscheweyh operator. Transylv. J. Math. Mech. 2019, 11, 1–8. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32–39. [Google Scholar]
- Altinkaya, S.A.H.S.E.N.E.; Yalcin, S.I.B.E.L. Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Chebyshev polynomials. Asia Pac. J. Math. 2017, 4, 90–99. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hawary, T.; Amourah, A.; Alsoboh, A.; Alsalhi, O. A New Comprehensive Subclass of Analytic Bi-Univalent Functions Related to Gegenbauer Polynomials. Symmetry 2023, 15, 576. https://doi.org/10.3390/sym15030576
Al-Hawary T, Amourah A, Alsoboh A, Alsalhi O. A New Comprehensive Subclass of Analytic Bi-Univalent Functions Related to Gegenbauer Polynomials. Symmetry. 2023; 15(3):576. https://doi.org/10.3390/sym15030576
Chicago/Turabian StyleAl-Hawary, Tariq, Ala Amourah, Abdullah Alsoboh, and Omar Alsalhi. 2023. "A New Comprehensive Subclass of Analytic Bi-Univalent Functions Related to Gegenbauer Polynomials" Symmetry 15, no. 3: 576. https://doi.org/10.3390/sym15030576