Kirchhoff Index and Additive Kirchhoff Index Based on Multiplicative Degree for a Random Polyomino Chain
Abstract
:1. Introduction
- Some scholars study the calculation methods of degree-Kirchhoff index for some special classes of graphs such as linear hexagonal chain, hexagonal chain, ladder diagram, ladder chain, linear polynomial chain, linear hexagon chain, and so on. This work was still unattended for a random polyomino chain.
- In [2], the authors have established a beautiful relation between the multiplicative degree-Kirchhoff index and the eigenvalues of the normalized Laplacian matrix.
- 1.
- with probability ,
- 2.
- with probability
2. The Expected Value of the Multiplicative Degree-Kirchhoff Index of a Random Polyomino Chain
- Case 1:Here, correlates to the vertex labeled or . As a result, is equivalent to
- Case 2:Here, correlates to the vertex labeled As a result, is equivalent to
- If .
- If .
- If , the polyomino ortho-chain realizes a minimum of .
- If , the polyomino para-chain realizes a maximum of .
3. The Expected Value of the Additive Degree-Kirchhoff Index of a Random Polyomino Chain
- Case 1:Here, coincides with the vertices or . Consequently, is given by
- Case 2:Here, coincides with the vertex . Consequently, is given by
- If
- If
- If , the polyomino ortho-chain realizes a minimum of .
- If , the polyomino para-chain realizes a maximum of .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, F. Resistance distance and the normalized Laplacian spectrum. Discret. Appl. Math. 2007, 155, 654–661. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I.; Feng, L.; Yu, G. Degree resistance distance of unicyclic graphs. Trans. Comb. 2012, 1, 27–40. [Google Scholar]
- Yang, Y. The Kirchhoff index of subdivisions of graphs. Discret. Appl. Math. 2014, 171, 153–157. [Google Scholar] [CrossRef]
- Yang, Y.; Klein, D.J. Resistance distance-based graph invariants of subdivisions and triangulations of graphs. Discret. Appl. Math. 2015, 181, 260–274. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Bu, C. Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs. Discret. Appl. Math. 2015, 187, 130–139. [Google Scholar] [CrossRef]
- Du, J.; Su, G.; Tu, J.; Gutman, I. The degree resistance distance of cacti. Discret. Appl. Math. 2015, 188, 16–24. [Google Scholar] [CrossRef]
- Qun, L. Some results of resistance distance and Kirchhoff index of subdivision vertex-edge corona for graphs. IAENG Int. J. Appl. Math. 2016, 46, 346–352. [Google Scholar]
- Bapat, R.B.; Karimi, M.; Liu, J.B. Kirchhoff index and degree Kirchhoff index of complete multipartite graphs. Discret. Appl. Math. 2017, 232, 41–49. [Google Scholar] [CrossRef]
- Qi, X.; Zhou, B. On the degree Kirchhoff index of unicyclic graphs. Discret. Appl. Math. 2020, 284, 86–98. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Li, S.; Zhang, M. The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain. Discret. Appl. Math. 2020, 282, 243–256. [Google Scholar] [CrossRef]
- Wei, S.; Shiu, W.C. Enumeration of Wiener indices in random polygonal chains. J. Math. Anal. Appl. 2019, 469, 537–548. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, X.; Chen, H. The limiting behaviours for the Gutman index, Schultz index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain. Discret. Appl. Math. 2021, 299, 62–73. [Google Scholar] [CrossRef]
- Hechao, L.I.U.; Rangwei, W.U.; Lihua, Y.O.U. Three types of Kirchhoff indices in the random cyclooctane chains. J. S. China Norm. Univ. (Nat. Sci. Ed.) 2021, 53, 96–103. [Google Scholar]
- Zhu, W.; Geng, X. Enumeration of the multiplicative degree-Kirchhoff index in the random polygonal chains. Molecules 2022, 27, 5669. [Google Scholar] [CrossRef]
- Berge, C.; Chen, C.C.; Chvátal, V.; Seow, C.S. Combinatorial properties of polyominoes. Combinatorica 1981, 1, 217–224. [Google Scholar] [CrossRef]
- Cockayne, E.J. Chessboard domination problems. Discret. Math. 1990, 86, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Harary, F.; Mezey, P.G. Cell-shedding transformations, equivalence relations, and similarity measures for square-cell configurations. Int. J. Quantum Chem. 1997, 62, 353–361. [Google Scholar] [CrossRef]
- Wu, T.; Lü, H.; Zhang, X. Extremal Matching Energy of Random Polyomino Chains. Entropy 2017, 19, 684. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Asif, M.; Ali, H.; Mahmood, F.; Ali, P. Kirchhoff Index and Additive Kirchhoff Index Based on Multiplicative Degree for a Random Polyomino Chain. Symmetry 2023, 15, 718. https://doi.org/10.3390/sym15030718
Li M, Asif M, Ali H, Mahmood F, Ali P. Kirchhoff Index and Additive Kirchhoff Index Based on Multiplicative Degree for a Random Polyomino Chain. Symmetry. 2023; 15(3):718. https://doi.org/10.3390/sym15030718
Chicago/Turabian StyleLi, Meilian, Muhammad Asif, Haidar Ali, Fizza Mahmood, and Parvez Ali. 2023. "Kirchhoff Index and Additive Kirchhoff Index Based on Multiplicative Degree for a Random Polyomino Chain" Symmetry 15, no. 3: 718. https://doi.org/10.3390/sym15030718
APA StyleLi, M., Asif, M., Ali, H., Mahmood, F., & Ali, P. (2023). Kirchhoff Index and Additive Kirchhoff Index Based on Multiplicative Degree for a Random Polyomino Chain. Symmetry, 15(3), 718. https://doi.org/10.3390/sym15030718