Next Article in Journal
Expansion-Free Dissipative Fluid Spheres: Analytical Solutions
Next Article in Special Issue
One-Parameter Hyperbolic Dual Spherical Movements and Timelike Ruled Surfaces
Previous Article in Journal
Five Generalized Rough Approximation Spaces Produced by Maximal Rough Neighborhoods
Previous Article in Special Issue
Applying an Extended β-ϕ-Geraghty Contraction for Solving Coupled Ordinary Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection

by
Mohammad Nazrul Islam Khan
1,
Fatemah Mofarreh
2 and
Abdul Haseeb
3,*
1
Department of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
2
Mathematical Science Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11546, Saudi Arabia
3
Department of Mathematics, College of Science, Jazan University, P.O. Box 2097, Jazan 45142, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(3), 753; https://doi.org/10.3390/sym15030753
Submission received: 24 February 2023 / Revised: 12 March 2023 / Accepted: 16 March 2023 / Published: 19 March 2023

Abstract

:
The purpose of this study is to evaluate the curvature tensor and the Ricci tensor of a P-Sasakian manifold with respect to the quarter-symmetric metric connection on the tangent bundle T M . Certain results on a semisymmetric P-Sasakian manifold, generalized recurrent P-Sasakian manifolds, and pseudo-symmetric P-Sasakian manifolds on T M are proved.

1. Introduction

Let M be a Riemannian manifold with a linear connection ˜ . If the torsion tensor T of ˜
T ( t 1 , t 2 ) = ˜ t 1 t 2 ˜ t 2 t 1 [ t 1 , t 2 ]
satisfies
T ( t 1 , t 2 ) = h ( t 2 ) ϕ t 1 h ( t 1 ) ϕ t 2 ,
where h is a 1-form and ϕ is a (1, 1) tensor field, then the connection ˜ is called a quarter-symmetric connection [1,2]. In addition, if ˜ holds the relation
( ˜ t 1 g ) ( t 2 , t 3 ) = 0 ,
t 1 , t 2 , t 3 ( M ) , the set of all smooth vector fields on M, then ˜ refers to the quarter-symmetric metric connection [3]. Many geometers such as [4,5,6,7,8,9,10,11,12,13,14,15,16] studied such connection on M and discussed some geometric properties of it. The quarter-symmetric connection generalizes the semi-symmetric connection that plays a key role in the geometry of Riemannian manifolds.
A Riemannian manifold M ( d i m M = n 3 ) with respect to the Levi–Civita connection ∇ is said to be
  • A generalized recurrent [17] if
    ( t 1 R ) ( t 2 , t 3 ) t 4 = α ( t 1 ) R ( t 2 , t 3 ) t 4 + β ( t 1 ) [ g ( t 3 , t 4 ) t 2 g ( t 2 , t 4 ) t 3 ] ,
    where α and β are 1-forms of which β 0 . If in Equation (4), α is non-zero and β is zero, then the manifold is named a recurrent manifold [18].
  • A pseudosymmetric [19] if
    ( t 1 R ) ( t 2 , t 3 ) t 4 = 2 α ( t 1 ) R ( t 2 , t 3 ) t 4 + α ( t 2 ) R ( t 1 , t 3 ) t 4 + α ( t 3 ) R ( t 2 , t 1 ) t 4 + α ( t 4 ) R ( t 2 , t 3 ) t 1 + g ( R ( t 2 , t 3 ) t 4 , t 1 ) ρ ,
    for α 0 . The 1-forms α and β associated with the vector fields ρ and σ are defined as follows:
    g ( t 1 , ρ ) = α ( t 1 ) , g ( t 1 , σ ) = β ( t 1 ) .
On the other hand, Yano and Ishihara [20] proposed the notion of the lifting of tensor fields and connections to its tangent bundle and established the basic properties of curvature tensors. In [21], Manev studied tangent bundles with a complete lift of the base metric and almost hypercomplex Hermitian–Norden structure and characterized it. The metallic structures on the tangent bundle of a Riemannian manifold by using complete and horizontal lifts were studied by Azami [22]. Bilen [23] introduced the deformed Sasaki metric, which is a Berger type, studied the metric connection to the tangent bundle, established some curvature properties of this metric, and characterized the projective vector field. The geometric structures and the connections from a manifold to its tangent bundle have been studied by many authors such as [24,25,26,27] and many others.
Our main findings in the paper are as follows:
  • Some results on the curvature tensor of a P-Sasakian manifold with respect to ˜ C on T M are obtained.
  • A theorem on a semisymmetric P-Sasakian manifold with respect to ˜ C on T M is proved.
  • A relationship between one and the forms α C and β C on T M of a generalized recurrent P-Sasakian manifold is established.
  • An expression of a pseudosymmetric P-Sasakian manifold with respect to ˜ C on T M is determined.

2. P -Sasakian Manifolds

Let M be a differentiable manifold ( d i m M = n ) endowed with a tensor field ϕ of type (1, 1), a characteristic vector field κ , and a 1-form h such that
ϕ 2 t 1 = t 1 h ( t 1 ) κ , ϕ κ = 0 , h ( κ ) = 1 , h ( ϕ t 1 ) = 0
and let g be a Riemannian metric satisfying
g ( κ , t 1 ) = h ( t 1 ) , g ( ϕ t 1 , ϕ t 2 ) = g ( t 1 , t 2 ) h ( t 1 ) h ( t 2 ) ;
then, the structure ( M , ϕ , κ , h , g ) is said to be an almost para-contact metric manifold [28,29] If M holds:
d η = 0 , t 1 κ = ϕ t 1 , ( t 1 ϕ ) t 2 = g ( t 1 , t 2 ) κ h ( t 2 ) t 1 + 2 η ( t 1 ) h ( t 2 ) κ ,
then M is called a para-Sasakian manifold or, briefly, a P-Sasakian manifold [30,31,32]. Moreover, if M satisfies
( t 1 h ) ( t 2 ) = g ( t 1 , t 2 ) + h ( t 1 ) h ( t 2 ) ,
then M is a called special para-Sasakian manifold or an S P -Sasakian manifold [33]. In a P-Sasakian manifold, we have [32]:
S ( t 1 , κ ) = ( n 1 ) h ( t 1 ) Q κ = ( n 1 ) κ ,
h ( R ( t 1 , t 2 ) t 3 ) = g ( t 1 , t 3 ) h ( t 2 ) g ( t 2 , t 3 ) h ( t 1 ) ,
R ( t 1 , κ ) t 2 = g ( t 1 , t 2 ) κ h ( t 2 ) t 1 ,
R ( t 1 , t 2 ) κ = h ( t 1 ) t 2 h ( t 2 ) t 1 ,
S ( ϕ t 1 , ϕ t 2 ) = S ( t 1 , t 2 ) + ( n 1 ) h ( t 1 ) h ( t 2 ) ,
h ( R ( t 1 , t 2 ) κ ) = 0 ,
t 1 , t 2 , t 3 ( M ) , where the curvature and the Ricci tensors are symbolized as R and S, respectively.
For further studies on P-Sasakian manifolds, we recommend the papers [31,32,34,35,36,37] and many others. An almost paracontact Riemannian manifold M is said to be an h-Einstein manifold if its Ricci tensor S ( 0 ) satisfies
S ( t 1 , t 2 ) = a g ( t 1 , t 2 ) + b h ( t 1 ) h ( t 2 ) ,
where a and b are smooth functions on the manifold M. In particular, if b = 0 , then M is named as an Einstein manifold.
Definition 1. 
In an n-dimensional differentiable manifold M, T p ( M ) is the tangent space at a point p of M, i.e., the set of all tangent vectors of M at p. Then, the set T M = p M T p ( M ) is the tangent bundle over M.
Definition 2. 
Let us consider ( x i ) , i = 1 , , n as a local co-ordinate system on M and let ( x i , y i ) , i = 1 , , n be an induced local co-ordinate system on T M . If t 1 = X i x i is a local vector field on M, then its vertical, complete, and horizontal lifts in terms of partial differential equations are provided by
t 1 V = X i y i ,
t 1 C = X i x i + X i x j y j y i .
Let f , h , t 1 and ϕ represent a function, the 1-form, the vector field, and the tensor field type (1,1), respectively, on M. The complete and vertical lifts of such quantities are f C , f V , h C , h V , t 1 C , t 1 V , ϕ C , ϕ V on the tangent bundle T M .
Let the mathematical operators ∇ and C be the Levi–Civita connections on M and T M . Then, we have [38,39,40]:
( f t 1 ) V = f V t 1 V , ( f t 1 ) C = f C t 1 V + f V t 1 C ,
t 1 V f V = 0 , t 1 V f C = t 1 C f V = ( t 1 f ) V , t 1 C f C = ( t 1 f ) C ,
h V ( f V ) = 0 , h V ( t 1 C ) = h C ( t 1 V ) = h ( t 1 ) V , h C ( t 1 C ) = h ( t 1 ) C ,
ϕ V t 1 C = ( ϕ t 1 ) V , ϕ C t 1 C = ( ϕ t 1 ) C ,
[ t 1 , t 2 ] V = [ t 1 C , t 2 V ] = [ t 1 V , t 2 C ] , [ t 1 , t 2 ] C = [ t 1 C , t 2 C ] ,
t 1 C C t 2 C = ( t 1 t 2 ) C , t 1 C C t 2 V = ( t 1 t 2 ) V .
Employing the complete lift on (1)–(16), we acquire
( ϕ 2 t 1 ) C = t 1 C h C ( t 1 C ) κ V h V ( t 1 C ) κ C ,
ϕ C κ C = ϕ V κ V = ϕ C κ V = ϕ V κ C = 0 ,
h C ( κ C ) = h V ( κ V ) = 0 , h C ( κ V ) = h V ( κ C ) = 1 ,
h C ( ϕ t 1 ) C = h V ( ϕ t 1 ) V = h C ( ϕ t 1 ) V = h V ( ϕ t 1 ) C = 0 .
Let g C on T M be the complete lift of g on M, then
g C ( κ C , t 1 C ) = h C ( t 1 C ) ,
g C ( ( ϕ t 1 ) C , ( ϕ t 2 ) C ) = g C ( t 1 C , t 2 C ) h C ( t 1 C ) h V ( t 2 C ) h V ( t 1 C ) h C ( t 2 C ) .
If ( T M , g C ) satisfies
( d η ) C = 0 , t 1 C C κ C = ( ϕ t 1 ) C , ( t 1 C C ϕ C ) t 2 C = g C ( t 1 C , t 2 C ) κ V g C ( t 1 V , t 2 C ) κ C h C ( t 2 C ) t 1 V h V ( t 2 C ) t 1 C + 2 { h C ( t 1 C ) h C ( t 2 C ) κ V + h C ( t 1 C ) h V ( t 2 C ) κ C + h V ( t 1 C ) h C ( t 2 C ) κ C } ,
( t 1 C C h C ) ( t 2 C ) = g C ( t 1 C , t 2 C ) + h C ( t 1 C ) h V ( t 2 C ) + h V ( t 1 C ) h C ( t 2 C ) ,
then the ( T M , g C ) is called an S P -Sasakian manifold. Furthermore, we have
S C ( t 1 C , κ C ) = ( n 1 ) h C ( t 1 C ) , ( Q ξ ) C = ( n 1 ) κ C ,
h C ( R C ( t 1 C , t 2 C ) t 3 C ) = g C ( t 1 C , t 3 C ) h V ( t 2 C ) + g C ( t 1 V , t 3 C ) h C ( t 2 C ) g C ( t 2 C , t 3 C ) h V ( t 1 C ) g C ( t 2 V , t 3 C ) h C ( t 1 C ) ,
R C ( t 1 C , κ C ) t 2 C = g C ( t 1 C , t 2 C ) κ V + g C ( t 1 V , t 2 C ) κ C h C ( t 2 C ) t 1 V h V ( t 2 C ) t 1 C ,
R C ( t 1 C , t 2 C ) κ C = h C ( t 1 C ) t 2 V + h V ( t 1 C ) t 2 C h C ( t 2 C ) t 1 V + h V ( t 2 C ) t 1 C ,
S C ( ( ϕ t 1 ) C , ( ϕ t 2 ) C ) = S C ( t 1 C , t 2 C ) + ( n 1 ) { h C ( t 1 C ) h V ( t 2 C ) + h V ( t 1 C ) h C ( t 2 C ) } ,
h C ( R C ( t 1 C , t 2 C ) κ C ) = 0 ,
such that
g C ( ( Q t 1 ) C , t 2 C ) = S C ( t 1 C , t 2 C ) ,
S C ( t 1 C , t 2 C ) = a g C ( t 1 C , t 2 C ) + b { h C ( t 1 C ) h V ( t 2 C ) + h V ( t 1 C ) h C ( t 2 C ) } ,
t 1 C , t 2 C , t 3 C ( T M ) .

3. Expression of the Curvature Tensor of a P -Sasakian Manifold with Respect to ˜ C on  TM

Let ˜ be a linear connection and ∇ be the Levi–Civita connection of a P-Sasakian manifold M such that
˜ t 1 t 2 = t 1 t 2 + H ( t 1 , t 2 ) ,
where H is a (1, 1)-type tensor and is provided by [1]
H ( t 1 , t 2 ) = 1 2 [ T ( t 1 , t 2 ) + T ( t 1 , t 2 ) + T ( t 2 , t 1 ) ] ,
such that
g ( T ( t 1 , t 2 ) , t 3 ) = g ( T ( t 3 , t 1 ) , t 2 ) .
Applying the complete lift on (1), (2), (6), and using (39)–(41), we infer
T C ( t 1 C , t 2 C ) = ˜ t 1 C C t 2 C ˜ t 2 C V t 1 C [ t 1 C , t 2 C ] ,
which satisfies
T C ( t 1 C , t 2 C ) = h C ( t 2 C ) ( ϕ t 1 ) C h C ( t 1 C ) ( ϕ t 2 ) C ,
( ˜ t 1 C C g C ) ( t 2 C , t 3 C ) = 0 ,
g C ( t 1 C , ρ C ) = α C ( t 1 C ) ,
˜ t 1 C C t 2 C = t 1 C C t 2 C + t 5 C ( t 1 C , t 2 C ) ,
where
H C ( t 1 C , t 2 C ) = 1 2 [ T C ( t 1 C , t 2 C ) + T C ( t 1 C , t 2 C ) + T C ( t 2 C , t 1 C ) ] ,
and
g C ( T C ( t 1 C , t 2 C ) , t 3 C ) = g C ( T C ( t 3 C , t 1 C ) , t 2 C ) .
From (43) and (48), we lead to
T C ( t 1 C , t 2 C ) = h C ( t 1 C ) ( ϕ t 2 ) C + h V ( t 1 C ) ( ϕ t 2 ) C g C ( ( ϕ t 1 ) C , t 2 C ) κ V g C ( ( ϕ t 1 ) V , t 2 C ) κ C .
Using (43) and (49) in (47), we have
H C ( t 1 C , t 2 C ) = h C ( t 2 C ) ( ϕ t 1 ) V + h V ( t 2 C ) ( ϕ t 1 ) C g C ( ( ϕ t 1 ) C , t 2 C ) κ V + g C ( ( ϕ t 1 ) V , t 2 C ) κ C .
Therefore, a quarter-symmetric metric connection ˜ C on T M is provided by
˜ t 1 C C t 2 C = t 1 C C t 2 C + h C ( t 2 C ) ( ϕ t 1 ) V + h V ( t 2 C ) ( ϕ t 1 ) C g C ( ( ϕ t 1 ) C , t 2 C ) κ V + g C ( ( ϕ t 1 ) V , t 2 C ) κ C .
Let R ˜ C and R C be the curvature tensors in respect of the connections ˜ C and C on T M , respectively. Then, from (51), we have
R ˜ C ( t 1 C , t 2 C ) t 5 C = R C ( t 1 C , t 2 C ) t 5 C + 3 { g C ( ( ϕ t 1 ) C , t 5 C ) ( ϕ t 2 ) V + g C ( ( ϕ t 1 ) V , t 5 C ) ( ϕ t 2 ) C } 3 { g C ( ( ϕ t 2 ) C , t 5 C ) ( ϕ t 1 ) V g C ( ( ϕ t 2 ) V , t 5 C ) ( ϕ t 1 ) C } + h C ( t 5 C ) h C ( t 1 C ) t 2 V + h C ( t 5 C ) h V ( t 1 C ) t 2 C + h V ( t 5 C ) h C ( t 1 C ) t 2 C h C ( t 5 C ) h C ( t 2 C ) t 1 V h C ( t 5 C ) h V ( t 2 C ) t 1 C h V ( t 5 C ) h C ( t 2 C ) t 1 C h C ( t 1 C ) g C ( t 2 C , t 5 C ) κ V h C ( t 1 C ) g C ( t 2 V , t 5 C ) κ C h V ( t 1 C ) g C ( t 2 C , t 5 C ) κ C + h C ( t 2 C ) g C ( t 1 C , t 5 C ) κ V + h C ( t 2 C ) g C ( t 1 V , t 5 C ) κ C + h V ( t 2 C ) g C ( t 1 C , t 5 C ) κ C ,
where R ˜ C ( t 1 C , t 2 C ) t 5 C = ˜ t 1 C C ˜ t 2 C C t 5 C ˜ t 2 C C ˜ t 1 C C t 5 C ˜ [ t 1 C , t 2 C ] C t 5 C , and t 1 C , t 2 C , t 3 C ( T M ) . By using an appropriate contraction, from (52), we obtain that
S ˜ C ( t 2 C , t 5 C ) = S C ( t 2 C , t 5 C ) + 2 g C ( t 2 C , t 5 C ) ( n + 1 ) { h C ( t 2 C ) h V ( t 5 C ) + h V ( t 2 C ) h C ( t 5 C ) } 3 t r a c e ϕ C g C ( ( ϕ t 2 ) C , t 5 C ) ,
where S ˜ C and S C are the Ricci tensors of ˜ C and C on T M , respectively. This leads to the following theorem:
Theorem 1. 
Let T M be the tangent bundle of the P-Sasakian manifold with ˜ C . Then, we have
(1)
(52)provides R C ;
(2)
S ˜ C is symmetric;
(3)
R ˜ C ( t 1 C , t 2 C , t 3 C , t 4 C ) + R ˜ C ( t 1 C , t 2 C , t 4 C , t 3 C ) = 0 ;
(4)
R ˜ C ( t 1 C , t 2 C , t 3 C , t 4 C ) + R ˜ C ( t 2 C , t 1 C , t 3 C , t 4 C ) = 0 ;
(5)
R ˜ C ( t 1 C , t 2 C , t 3 C , t 4 C ) = R ˜ C ( t 3 C , t 4 C , t 1 C , t 2 C ) ;
(6)
S ˜ C ( t 2 C , κ C ) = 2 ( n 1 ) h C ( t 2 C ) ;
for all  t 1 C , t 2 C , t 3 C ( T M ) .
With the help of (25)–(28), (35) and (36) from (52) we obtain
R ˜ C ( κ C , t 2 C ) t 5 C = 2 [ h C ( t 5 C ) t 2 V + h V ( t 5 C ) t 2 C g C ( t 5 C , t 2 C ) κ V g C ( t 5 V , t 2 C ) κ C ] ,
and
R ˜ C ( t 1 C , t 2 C ) κ C = 2 [ h C ( t 1 C ) t 2 V + h V ( t 1 C ) t 2 C h C ( t 2 C ) t 1 V h V ( t 2 C ) t 1 C ] ,
where t 1 C , t 2 C ( T M ) .

4. Expression of Semi-Symmetric P -Sasakian Manifolds with Respect to ˜ C on TM

In 2015, Mandal and De [41] characterized semisymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection, that is, the curvature tensor satisfies the condition:
R ˜ ( κ , t 2 ) · R ˜ ( t 5 , t 6 ) t 4 = 0 .
This implies
R ˜ ( κ , t 2 ) R ˜ ( t 5 , t 6 ) t 4 R ˜ ( R ˜ ( κ , t 2 ) t 5 , t 6 ) t 4 R ˜ ( t 5 , R ˜ ( κ , t 2 ) t 6 ) t 4 R ˜ ( t 5 , t 6 ) R ˜ ( κ , t 2 ) t 4 = 0 .
Applying the complete lift on (56), we infer
( R ˜ ( κ , t 2 ) R ˜ ( t 5 , t 6 ) t 4 ) C ( R ˜ ( R ˜ ( κ , t 2 ) t 5 , t 6 ) t 4 ) C ( R ˜ ( t 5 , R ˜ ( κ , t 2 ) t 6 ) t 4 ) C ( R ˜ ( t 5 , t 6 ) R ˜ ( κ , t 2 ) t 4 ) C = 0 .
Using (54) and (57) yields
h C ( R ˜ ( t 5 , t 6 ) t 4 ) C t 2 C 2 { g C ( t 2 C , ( R ˜ ( t 5 , t 6 ) t 4 ) C ) κ V + g C ( t 2 V , ( R ˜ ( t 5 , t 6 ) t 4 ) C ) κ C } 2 { h C ( t 5 C ) ( R ˜ ( t 2 , t 6 ) t 4 ) V + h V ( t 5 C ) ( R ˜ ( t 2 , t 6 ) t 4 ) C } + 2 { g C ( t 2 C , t 5 C ) ( R ˜ ( κ , t 6 ) t 4 ) V + g C ( t 2 V , t 5 C ) ( R ˜ ( κ , t 6 ) t 4 ) C } 2 { h C ( t 6 C ) ( R ˜ ( t 5 , t 2 ) t 4 ) V + h V ( t 6 C ) ( R ˜ ( t 5 , t 2 ) t 4 ) C } + 2 { g C ( V C , t 2 C ) ( R ˜ ( t 5 , κ ) t 4 ) V + g C ( t 6 V , t 2 C ) ( R ˜ ( t 5 , κ ) t 4 ) C } 2 { h C ( t 4 C ) ( R ˜ ( t 5 , t 6 ) t 2 ) V + h V ( t 4 C ) ( R ˜ ( t 5 , t 6 ) t 2 ) C } + 2 { g C ( t 2 C , t 4 C ) ( R ˜ ( t 5 , t 6 ) κ ) V + g C ( t 2 V , t 4 C ) ( R ˜ ( t 5 , t 6 ) κ ) C } = 0 .
Using the inner product of (58) with κ and then using (52), (54) and (55), we obtain from (58) that
g C ( ( R ( t 5 , t 6 ) t 4 ) C , t 2 C ) + 3 { g C ( ( ϕ t 5 ) C , t 4 C ) g C ( ( ϕ t 6 ) V , t 2 C ) + g C ( ( ϕ t 6 ) V , t 4 C ) g C ( ( ϕ t 6 ) C , t 2 C ) } 3 { g C ( ( ϕ t 6 ) V , t 4 C ) g C ( ( ϕ t 6 ) C , t 2 C ) + g C ( ( ϕ t 6 ) C , t 4 C ) g C ( ( ϕ t 5 ) V , t 2 C ) } + g C ( t 6 C , t 2 C ) h C ( t 5 C ) h V ( t 4 C ) + g C ( t 6 C , t 2 C ) h V ( t 5 C ) h C ( t 4 C ) + g C ( t 6 V , t 2 C ) h C ( t 5 C ) h C ( t 4 C ) g C ( t 5 C , t 2 C ) h C ( t 6 C ) h V ( t 4 C ) g C ( t 5 C , t 2 C ) h V ( t 6 C ) h C ( t 4 C ) g C ( t 5 V , t 2 C ) h C ( t 6 C ) h C ( t 4 C ) g C ( t 6 C , t 4 C ) h C ( t 5 C ) h V ( t 2 C ) g C ( t 6 C , t 4 C ) h V ( t 5 C ) h C ( t 2 C ) g C ( t 6 V , t 4 C ) h C ( t 5 C ) h C ( t 2 C ) + g C ( t 5 C , t 4 C ) h C ( t 6 C ) h V ( t 2 C ) + g C ( t 5 C , t 4 C ) h V ( t 6 C ) h C ( t 2 C ) + g C ( t 5 V , t 4 C ) h C ( t 6 C ) h C ( t 2 C ) + 2 { g C ( t 2 C , t 5 C ) g C ( t 6 V , t 4 C ) + g C ( t 2 V , t 5 C ) g C ( t 6 C , t 4 C ) g C ( t 5 C , t 4 C ) g C ( t 6 V , t 2 C ) g C ( t 5 V , t 4 C ) g C ( t 6 C , t 2 C ) = 0 .
By contracting the above equation over t 4 and t 6 , we infer
S C ( t 5 C , t 2 C ) = 2 n g C ( t 5 C , t 2 C ) + ( n + 1 ) { h V ( t 5 C ) h C ( t 2 C ) + h C ( t 5 C ) h V ( t 2 C ) } + 3 t r a c e ϕ C g C ( ( ϕ t 5 ) C , t 2 C ) .
In view of (53) and (60), we obtain
S ˜ C ( t 5 C , t 2 C ) = 2 ( n 1 ) g C ( t 5 C , t 2 C ) .
By contracting (61), we obtain
r ˜ C = 2 n ( n 1 ) .
This leads to the following theorem:
Theorem 2. 
The tangent bundle T M of a quarter-symmetric P-Sasakian manifold M is an Eienstein manifold with0 respect to ˜ C and r ˜ C = 2 n ( n 1 ) .

5. Expression of Generalized Recurrent P -Sasakian Manifolds in Respect of ˜ C on  TM

In this section, we consider generalized recurrent P-Sasakian manifolds with respect to the quarter-symmetric metric connection ˜ . Equation (4) with respect to ˜ can be expressed as
( ˜ t 1 R ˜ ) ( t 2 , t 3 ) t 4 = α ( t 1 ) R ˜ ( t 2 , t 3 ) t 4 + β ( t 1 ) [ g ( t 3 , t 4 ) t 2 g ( t 2 , t 4 ) t 3 ] .
Applying the complete lift on (63), we infer
( ( ˜ t 1 R ˜ ) ( t 2 , t 3 ) t 4 ) C = ( α ( t 1 ) ( R ˜ ( t 2 , t 3 ) t 4 ) C + β C ( t 1 C ) g C ( t 3 C , t 4 C ) t 2 V + β C ( t 1 C ) g C ( t 3 V , t 4 C ) t 2 C + β V ( t 1 C ) g C ( t 3 C , t 4 C ) t 2 C β C ( t 1 C ) g C ( t 2 C , t 4 C ) t 3 V β C ( t 1 C ) g C ( t 2 V , t 4 C ) t 3 C β V ( t 1 C ) g C ( t 2 C , t 4 C ) t 3 C
for t 1 , t 2 , t 3 , t 4 ( M ) . Substituting t 2 = t 4 = κ in (64),
( ( ˜ t 1 R ˜ ) ( κ , t 3 ) κ ) C = α C ( t 1 C ) ( R ˜ ( κ , t 3 ) κ ) V + α V ( t 1 C ) ( R ˜ ( κ , t 3 ) κ ) C + β C ( t 1 C ) h C ( t 3 C ) κ V + β C ( t 1 C ) h V ( t 3 C ) κ C + β V ( t 1 C ) h C ( t 3 C ) κ C β C ( t 1 C ) t 3 V β V ( t 1 C ) t 3 C .
Using (55) in (65), we obtain
( ( ˜ t 1 R ˜ ) ( t 2 , t 3 ) κ ) C = 2 [ ( ( ˜ t 1 C C h C ) t 2 C ) t 3 C ( ˜ t 1 C C h C ) t 3 C ) t 2 C ] .
On the other hand, using (9), (44) and (51) we obtain
( ˜ t 1 C C h C ) t 2 C = 2 g C ( t 2 C , ( ϕ t 1 ) C ) .
Thus, from the differential Equations (66) and (67), we have
( ( ˜ t 1 R ˜ ) ( t 2 , t 3 ) κ ) C = 4 [ g C ( t 2 C , ( ϕ t 1 ) C t 3 V + g C ( t 2 V , ( ϕ t 1 ) C t 3 C g C ( t 3 C , ( ϕ t 1 ) C t 2 V g C ( t 3 V , ( ϕ t 1 ) C t 2 C ] ,
which, by putting t 2 = κ , yields
( ( ˜ t 1 R ˜ ) ( κ , t 3 ) κ ) C = 4 g C ( t 3 C , ( ϕ t 1 ) C ξ V g C ( t 3 V , ( ϕ t 1 ) C κ C .
Again, from (55), we have
( R ˜ ( κ , t 3 ) κ ) C = 2 [ t 3 C h C ( t 3 C ) κ V h V ( t 3 C ) κ C ] .
Thus, from (65) and (69), we obtain
( ( ˜ t 1 R ˜ ) ( κ , t 3 ) κ ) C = α C ( t 1 C ) [ t 3 C h C ( t 3 C ) κ V h V ( t 3 C ) κ C ] + β C ( t 1 C ) [ h C ( t 3 C ) κ V + h V ( t 3 C ) κ C t 3 C ] .
In view of (68) and (70), we obtain
4 { g C ( t 3 C , ( ϕ t 1 ) C ) κ V + g C ( t 3 V , ( ϕ t 1 ) C ) κ C } = 2 α C ( t 1 C ) [ t 3 C h C ( t 3 C ) κ V h V ( t 3 C ) κ C ] β C ( t 1 C ) [ t 3 C h C ( t 3 C ) κ V h V ( t 3 C ) κ C ] .
By applying ϕ on (71) and using (25)–(28), we infer
β C ( t 1 C ) = 2 α C ( t 1 C ) .
This leads to the following theorem:
Theorem 3. 
The 1-forms α C and β C on T M of a generalized recurrent P-Sasakian manifold are related by β C = 2 α C .
Next, applying the complete lift on (4), we infer
( ( ˜ t 1 R ˜ ) ( t 2 , t 3 ) t 4 ) C = α C ( t 1 C ) ( R ˜ ( t 2 , t 3 ) t 4 ) V + α V ( t 1 C ) ( R ˜ ( t 2 , t 3 ) t 4 ) C + β C ( t 1 C ) g C ( t 3 C , t 4 C ) t 2 V + β C ( t 1 C ) g C ( t 3 V , t 4 C ) t 2 C + β V ( t 1 C ) g C ( t 3 C , t 4 C ) t 2 C β C ( t 1 C ) g C ( t 2 C , t 4 C ) t 3 V β C ( t 1 C ) g C ( t 2 V , t 4 C ) t 3 C β V ( t 1 C ) g C ( t 3 C , t 4 C ) t 2 C ,
where ˜ C is the complete lift of ˜ . From the above equation, it follows that
( ( ˜ t 1 R ˜ ) ( t 2 , t 3 ) t 4 ) C = α C ( t 1 C ) ( R ˜ ( t 2 , t 3 ) t 4 ) V + α V ( t 1 C ) ( R ˜ ( t 2 , t 3 ) t 4 ) C ,
t 1 C , t 2 C , t 3 C , t 4 C ( T M ) .
Thus, in view of Theorem 3, we obtain α C ( t 1 C ) = 0 . Hence, we have the following corollary:
Corollary 1. 
The 1-form α C on T M of a generalized recurrent P-Sasakian manifold vanishes.

6. Expression of Pseudosymmetric P -Sasakian Manifolds with Respect to ˜ C on TM

In this section, we prove the following theorem:
Theorem 4. 
There is no pseudosymmetric P-Sasakian manifold with respect to ˜ C on T M .
Proof. 
Let us suppose that T M is the tangent bundle of a pseudosymmetric P-Sasakian manifold with respect to ˜ C . Using the complete lift on (5), we obtain
( ( ˜ t 1 R ˜ ) ( t 2 , t 3 ) t 4 ) C = 2 ( α ( t 1 ) R ˜ ( t 2 , t 3 ) t 4 ) C + ( α ( t 2 ) R ˜ ( t 1 , t 3 ) t 4 ) C + ( α ( t 3 ) R ˜ ( t 2 , t 1 ) t 4 ) C + ( α ( t 4 ) R ˜ ( t 2 , t 3 ) t 1 ) C + ( g ( R ˜ ( t 2 , t 3 ) t 4 , t 1 ) ρ ) C .
By contracting t 2 in (75) and substituting t 4 = κ , we have
( ( ˜ t 1 S ˜ ) ( t 3 , κ ) ) C = 2 ( α ( t 1 ) S ˜ ( t 3 , κ ) ) C + ( α ( R ˜ ( t 1 , t 3 ) κ ) C + ( α ( t 3 ) S ˜ ( t 1 , κ ) ) C + ( α ( κ ) S ˜ ( t 3 , t 1 ) ) C + ( g ( R ˜ ( ρ , t 3 ) κ , t 1 ) ) C .
In view of Theorem 1, we acquire
S ˜ C ( t 3 C , κ C ) = 2 ( n 1 ) h C ( t 3 C ) .
In consequence of (67), we infer
˜ t 1 C C S ˜ C ( t 3 C , κ C ) = 4 ( n 1 ) g C ( t 3 C , ( ϕ t 1 ) C ) .
Next, the consequences of (25)–(28) and Theorem 1, we infer
˜ t 1 C C S ˜ C ( t 3 C , κ C ) = 4 n { α C ( t 1 C ) h V ( t 3 C ) + α C ( t 1 C ) h C ( t 3 V ) } + 2 { h C ( t 1 C ) α V ( t 3 C ) + h C ( t 1 C ) α C ( t 3 V ) } 2 ( n 1 ) { α C ( t 3 C ) h V ( t 1 C ) + α C ( t 3 C ) h C ( t 1 V ) } + 2 { α C ( κ C ) g C ( t 1 V , t 3 C ) + α V ( κ C ) g C ( t 1 C , t 3 C ) } + α C ( κ C ) S ˜ C ( t 1 V , t 3 C ) + α V ( κ C ) S ˜ C ( t 1 C , t 3 C ) .
Equating the differential Equations (77) and (78) and then using t 1 = κ , we obtain
4 ( n 1 ) g C ( t 3 C , ( ϕ κ ) C ) = 4 n { α C ( κ C ) h V ( t 3 C ) + α C ( κ C ) h C ( t 3 V ) } + 2 { h C ( κ C ) α V ( t 3 C ) + h C ( κ C ) α C ( t 3 V ) } 2 ( n 1 ) { α C ( t 3 C ) h V ( κ C ) + α C ( t 3 C ) h C ( κ V ) } + 2 { α C ( κ C ) h V ( t 3 C ) + α V ( κ C ) h C ( t 3 C ) } + α C ( κ C ) S ˜ C ( κ V , t 3 C ) + α V ( κ C ) S ˜ C ( κ C , t 3 C ) .
By using (25)–(30), (45), and Theorem 1 in (79), we lead to
( 2 3 n ) { α C ( κ C ) h V ( t 3 C ) + α C ( κ C ) h C ( t 3 V ) } + ( 2 n ) α C ( t 3 C ) = 0 .
By replacing t 3 by κ in (80), we obtain α C κ C = 0 , which, used in (80), provides
α C t 3 C = 0 α C = 0 .
This goes against what we assumed. This completes the proof. □

Author Contributions

Conceptualization, M.N.I.K., A.H. and F.M.; methodology, M.N.I.K., A.H. and F.M.; investigation, M.N.I.K., A.H. and F.M.; writing—original draft preparation, M.N.I.K., A.H. and F.M.; writing—review and editing, M.N.I.K., A.H. and F.M. All authors have read and agreed to the published version of the manuscript.

Funding

The author, Fatemah Mofarreh, expresses her gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R27), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are thankful to the editor and anonymous referees for the constructive comments provided to improve the quality of the paper. The third author, Fatemah Mofarreh, expresses her gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R27), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Golab, S. On semi-symmetric and quarter-symmetric linear connections. Tensor NS 1975, 29, 249–254. [Google Scholar]
  2. Balcerzak, B. On symmetric brackets induced by linear connections. Symmetry 2021, 13, 1003. [Google Scholar] [CrossRef]
  3. Schouten, J.A. Ricci-Calculus—An Introduction to Tensor Analysis and Geometrical Applications; Springer: Berlin/Heidelberg, Germany, 1954. [Google Scholar]
  4. Biswas, S.C.; De, U.C. Quarter-symmetric metric connection in SP-Sasakian manifold. Common. Fac. Sci. Univ. Ank. Al. 1997, 46, 49–56. [Google Scholar]
  5. Kumar, K.T.; Bagewadi, C.S. On ϕ-Recurrent para-Sasakian manifold admitting quarter-symmetric metric connection. ISRN Geom. 2012, 2012, 317253. [Google Scholar]
  6. Prasad, R.; Haseeb, A. On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection. Novi Sad J. Math. 2016, 46, 103–116. [Google Scholar]
  7. Zhang, P.; Li, Y.; Roy, S.; Dey, S. Geometry of α-cosymplectic metric as *-conformal η-Ricci-Yamabe solitons admitting quarter symmetric metric connection. Symmetry 2021, 13, 2189. [Google Scholar] [CrossRef]
  8. Li, J.; He, G.; Zhao, P. On submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. Symmetry 2017, 9, 112. [Google Scholar] [CrossRef] [Green Version]
  9. Yano, K.; Imai, T. Quarter-symmetric metric connections and their curvature tensors. Tensor NS 1982, 38, 13–18. [Google Scholar]
  10. Ahmad, M.; Jun, J.B.; Haseeb, A. Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection. Bull. Korean Math. Soc. 2009, 55, 477–487. [Google Scholar] [CrossRef]
  11. Li, Y.; Aldossary, M.T.; Abdel-Baky, R.A. Spacelike Circular Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
  12. Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singularities for Timelike Developable Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
  13. Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2022, 1–12. [Google Scholar] [CrossRef]
  14. Li, Y.; Abolarinwa, A.; Alkhaldi, A.H.; Ali, A. Some Inequalities of Hardy Type Related to Witten-Laplace Operator on Smooth Metric Measure Spaces. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
  15. Li, Y.; Mofarreh, F.; Laurian-Ioan, P.; Ali, A. Geometric Inequalities on the Dirac Operator and the Frobenius Norms. Adv. Math. Phys. 2023, 2023, 1275374. [Google Scholar]
  16. Li, Y.; Tuncer, O.O. On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space. Math. Meth. Appl. Sci. 2023, 1–15. [Google Scholar] [CrossRef]
  17. De, U.C.; Guha, N. On generalized recurrent manifolds. J. Natl. Acad. Math. 1991, 9, 85–92. [Google Scholar]
  18. Walker, A.G. On Ruse’s spaces of recurrent curvature. Proc. Lond. Math. Soc. 1951, 52, 36–64. [Google Scholar] [CrossRef]
  19. Chaki, M.C. On pseudosymmetric manifolds. Ann. Alexandru Ioan Cuza Univ. Math. 1987, 33, 53–58. [Google Scholar]
  20. Yano, K.; Ishihara, S. Tangent and Cotangent Bundles; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
  21. Manev, M. Tangent bundles with complete lift of the base metric and almost hypercomplex Hermitian-Norden structure. Comptes Rendus Acad. Bulg. Sci. Sci. Math. Nat. 2014, 67, 313–322. [Google Scholar]
  22. Azami, S. General natural metallic structure on tangent bundle. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 81–88. [Google Scholar] [CrossRef]
  23. Bilen, L. Metric connection on tangent bundle with Berger-type deformed Sasaki metric. Turk. J Math. 2022, 46, 1036–1047. [Google Scholar] [CrossRef]
  24. Dida, H.M.; Ikemakhen, A. A class of metrics on tangent bundles of pseudo-Riemannian manifolds. Arch. Math. 2011, 47, 293–308. [Google Scholar]
  25. Khan, M.N.I. Lifts of semi-symmetric non-metric connection on a Kähler manifold. Afr. Mat. 2016, 27, 345–352. [Google Scholar] [CrossRef]
  26. Khan, M.N.I. Novel theorems for metallic structures on the frame bundle of the second order. Filomat 2022, 36, 4471–4482. [Google Scholar] [CrossRef]
  27. Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
  28. Sato, I. On a structure similar to the almost contact structure. Tensor NS 1976, 30, 219–224. [Google Scholar]
  29. Choudhary, M.A.; Khan, M.N.I.; Siddiqi, M.D. Some basic inequalities on (ϵ)-para Sasakian manifold. Symmetry 2022, 14, 2585. [Google Scholar] [CrossRef]
  30. Adati, T.; Matsumoto, K. On conformally recurrent and conformally symmetric P-Sasakian manifolds. TRU Math. 1977, 13, 25–32. [Google Scholar]
  31. Matsumoto, K.; Ianus, S.; Mihai, I. On P-Sasakian manifolds which admit certain tensor fields. Publ. Math. Debr. 1986, 33, 61–65. [Google Scholar] [CrossRef]
  32. Özgür, C. On a class of para-Sasakian manifolds. Turk. J. Math. 2005, 29, 249–257. [Google Scholar]
  33. Sato, I.; Matsumoto, K. On P-Sasakian manifolds satisfying certain conditions. Tensor NS 1979, 33, 173–178. [Google Scholar]
  34. Haseeb, A. Some new results on para-Sasakian manifold with a quarter symmetric metric connection. Facta Univ. NIS Ser. Math. Inform. 2015, 30, 765–776. [Google Scholar]
  35. Adati, T.; Miyazawa, T. Some properties of P-Sasakian manifolds. TRU Math. 1977, 13, 33–42. [Google Scholar]
  36. De, U.C.; Özgür, C.; Arslan, K.; Murathan, C.; Yildiz, A. On a type of P-Sasakian manifolds. Math. Balk. 2008, 22, 25–36. [Google Scholar]
  37. Deshmukh, S.; Ahmed, S. Para Sasakian manifolds isometrically immersed in spaces of constant curvature. Kyungpook J. Math. 1980, 20, 112–121. [Google Scholar]
  38. Das, L.S.; Khan, M.N.I. Almost r-contact structures on the tangent bundle. Differ. Geom.-Dyn. Syst. 2005, 7, 34–41. [Google Scholar]
  39. Khan, M.N.I.; De, U.C. Liftings of metallic structures to tangent bundles of order r. AIMS Math. 2022, 7, 7888–7897. [Google Scholar] [CrossRef]
  40. Peyghan, E.; Firuzi, F.; De, U.C. Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat 2019, 33, 2543–2554. [Google Scholar] [CrossRef]
  41. Mandal, K.; De, U.C. Quarter-symmetric metric connection in a P-Sasakian manifold. Analele Univ. Vest Timis. Ser. Mat.-Inform. 2015, LIII, 137–150. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection. Symmetry 2023, 15, 753. https://doi.org/10.3390/sym15030753

AMA Style

Khan MNI, Mofarreh F, Haseeb A. Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection. Symmetry. 2023; 15(3):753. https://doi.org/10.3390/sym15030753

Chicago/Turabian Style

Khan, Mohammad Nazrul Islam, Fatemah Mofarreh, and Abdul Haseeb. 2023. "Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection" Symmetry 15, no. 3: 753. https://doi.org/10.3390/sym15030753

APA Style

Khan, M. N. I., Mofarreh, F., & Haseeb, A. (2023). Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection. Symmetry, 15(3), 753. https://doi.org/10.3390/sym15030753

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop