Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection
Abstract
:1. Introduction
- A pseudosymmetric [19] if
- Some results on the curvature tensor of a P-Sasakian manifold with respect to on are obtained.
- A theorem on a semisymmetric P-Sasakian manifold with respect to on is proved.
- A relationship between one and the forms and on of a generalized recurrent P-Sasakian manifold is established.
- An expression of a pseudosymmetric P-Sasakian manifold with respect to on is determined.
2. -Sasakian Manifolds
3. Expression of the Curvature Tensor of a -Sasakian Manifold with Respect to on
- (1)
- (52)provides ;
- (2)
- is symmetric;
- (3)
- (4)
- (5)
- (6)
4. Expression of Semi-Symmetric -Sasakian Manifolds with Respect to on
5. Expression of Generalized Recurrent -Sasakian Manifolds in Respect of on
6. Expression of Pseudosymmetric -Sasakian Manifolds with Respect to on
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golab, S. On semi-symmetric and quarter-symmetric linear connections. Tensor NS 1975, 29, 249–254. [Google Scholar]
- Balcerzak, B. On symmetric brackets induced by linear connections. Symmetry 2021, 13, 1003. [Google Scholar] [CrossRef]
- Schouten, J.A. Ricci-Calculus—An Introduction to Tensor Analysis and Geometrical Applications; Springer: Berlin/Heidelberg, Germany, 1954. [Google Scholar]
- Biswas, S.C.; De, U.C. Quarter-symmetric metric connection in SP-Sasakian manifold. Common. Fac. Sci. Univ. Ank. Al. 1997, 46, 49–56. [Google Scholar]
- Kumar, K.T.; Bagewadi, C.S. On ϕ-Recurrent para-Sasakian manifold admitting quarter-symmetric metric connection. ISRN Geom. 2012, 2012, 317253. [Google Scholar]
- Prasad, R.; Haseeb, A. On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection. Novi Sad J. Math. 2016, 46, 103–116. [Google Scholar]
- Zhang, P.; Li, Y.; Roy, S.; Dey, S. Geometry of α-cosymplectic metric as *-conformal η-Ricci-Yamabe solitons admitting quarter symmetric metric connection. Symmetry 2021, 13, 2189. [Google Scholar] [CrossRef]
- Li, J.; He, G.; Zhao, P. On submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. Symmetry 2017, 9, 112. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Imai, T. Quarter-symmetric metric connections and their curvature tensors. Tensor NS 1982, 38, 13–18. [Google Scholar]
- Ahmad, M.; Jun, J.B.; Haseeb, A. Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection. Bull. Korean Math. Soc. 2009, 55, 477–487. [Google Scholar] [CrossRef]
- Li, Y.; Aldossary, M.T.; Abdel-Baky, R.A. Spacelike Circular Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singularities for Timelike Developable Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
- Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2022, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Alkhaldi, A.H.; Ali, A. Some Inequalities of Hardy Type Related to Witten-Laplace Operator on Smooth Metric Measure Spaces. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Laurian-Ioan, P.; Ali, A. Geometric Inequalities on the Dirac Operator and the Frobenius Norms. Adv. Math. Phys. 2023, 2023, 1275374. [Google Scholar]
- Li, Y.; Tuncer, O.O. On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space. Math. Meth. Appl. Sci. 2023, 1–15. [Google Scholar] [CrossRef]
- De, U.C.; Guha, N. On generalized recurrent manifolds. J. Natl. Acad. Math. 1991, 9, 85–92. [Google Scholar]
- Walker, A.G. On Ruse’s spaces of recurrent curvature. Proc. Lond. Math. Soc. 1951, 52, 36–64. [Google Scholar] [CrossRef]
- Chaki, M.C. On pseudosymmetric manifolds. Ann. Alexandru Ioan Cuza Univ. Math. 1987, 33, 53–58. [Google Scholar]
- Yano, K.; Ishihara, S. Tangent and Cotangent Bundles; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Manev, M. Tangent bundles with complete lift of the base metric and almost hypercomplex Hermitian-Norden structure. Comptes Rendus Acad. Bulg. Sci. Sci. Math. Nat. 2014, 67, 313–322. [Google Scholar]
- Azami, S. General natural metallic structure on tangent bundle. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 81–88. [Google Scholar] [CrossRef]
- Bilen, L. Metric connection on tangent bundle with Berger-type deformed Sasaki metric. Turk. J Math. 2022, 46, 1036–1047. [Google Scholar] [CrossRef]
- Dida, H.M.; Ikemakhen, A. A class of metrics on tangent bundles of pseudo-Riemannian manifolds. Arch. Math. 2011, 47, 293–308. [Google Scholar]
- Khan, M.N.I. Lifts of semi-symmetric non-metric connection on a Kähler manifold. Afr. Mat. 2016, 27, 345–352. [Google Scholar] [CrossRef]
- Khan, M.N.I. Novel theorems for metallic structures on the frame bundle of the second order. Filomat 2022, 36, 4471–4482. [Google Scholar] [CrossRef]
- Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
- Sato, I. On a structure similar to the almost contact structure. Tensor NS 1976, 30, 219–224. [Google Scholar]
- Choudhary, M.A.; Khan, M.N.I.; Siddiqi, M.D. Some basic inequalities on (ϵ)-para Sasakian manifold. Symmetry 2022, 14, 2585. [Google Scholar] [CrossRef]
- Adati, T.; Matsumoto, K. On conformally recurrent and conformally symmetric P-Sasakian manifolds. TRU Math. 1977, 13, 25–32. [Google Scholar]
- Matsumoto, K.; Ianus, S.; Mihai, I. On P-Sasakian manifolds which admit certain tensor fields. Publ. Math. Debr. 1986, 33, 61–65. [Google Scholar] [CrossRef]
- Özgür, C. On a class of para-Sasakian manifolds. Turk. J. Math. 2005, 29, 249–257. [Google Scholar]
- Sato, I.; Matsumoto, K. On P-Sasakian manifolds satisfying certain conditions. Tensor NS 1979, 33, 173–178. [Google Scholar]
- Haseeb, A. Some new results on para-Sasakian manifold with a quarter symmetric metric connection. Facta Univ. NIS Ser. Math. Inform. 2015, 30, 765–776. [Google Scholar]
- Adati, T.; Miyazawa, T. Some properties of P-Sasakian manifolds. TRU Math. 1977, 13, 33–42. [Google Scholar]
- De, U.C.; Özgür, C.; Arslan, K.; Murathan, C.; Yildiz, A. On a type of P-Sasakian manifolds. Math. Balk. 2008, 22, 25–36. [Google Scholar]
- Deshmukh, S.; Ahmed, S. Para Sasakian manifolds isometrically immersed in spaces of constant curvature. Kyungpook J. Math. 1980, 20, 112–121. [Google Scholar]
- Das, L.S.; Khan, M.N.I. Almost r-contact structures on the tangent bundle. Differ. Geom.-Dyn. Syst. 2005, 7, 34–41. [Google Scholar]
- Khan, M.N.I.; De, U.C. Liftings of metallic structures to tangent bundles of order r. AIMS Math. 2022, 7, 7888–7897. [Google Scholar] [CrossRef]
- Peyghan, E.; Firuzi, F.; De, U.C. Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat 2019, 33, 2543–2554. [Google Scholar] [CrossRef]
- Mandal, K.; De, U.C. Quarter-symmetric metric connection in a P-Sasakian manifold. Analele Univ. Vest Timis. Ser. Mat.-Inform. 2015, LIII, 137–150. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection. Symmetry 2023, 15, 753. https://doi.org/10.3390/sym15030753
Khan MNI, Mofarreh F, Haseeb A. Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection. Symmetry. 2023; 15(3):753. https://doi.org/10.3390/sym15030753
Chicago/Turabian StyleKhan, Mohammad Nazrul Islam, Fatemah Mofarreh, and Abdul Haseeb. 2023. "Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection" Symmetry 15, no. 3: 753. https://doi.org/10.3390/sym15030753
APA StyleKhan, M. N. I., Mofarreh, F., & Haseeb, A. (2023). Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection. Symmetry, 15(3), 753. https://doi.org/10.3390/sym15030753