Next Article in Journal
Leray–Schauder Alternative for the Existence of Solutions of a Modified Coupled System of Caputo Fractional Differential Equations with Two Point’s Integral Boundary Conditions
Previous Article in Journal
Picture Fuzzy Soft Prioritized Aggregation Operators and Their Applications in Medical Diagnosis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation

by
Muhammad Bilal Khan
1,*,
Jorge E. Macías-Díaz
2,3,*,
Saeid Jafari
4,
Abdulwadoud A. Maash
5 and
Mohamed S. Soliman
5
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Avenida Universidad 940, Aguascalientes 20131, Mexico
3
Department of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, Estonia
4
College of Vestsjaelland South & Mathematical and Physical Science Foundation, 4200 Slagelse, Denmark
5
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Symmetry 2023, 15(4), 862; https://doi.org/10.3390/sym15040862
Submission received: 10 March 2023 / Revised: 24 March 2023 / Accepted: 26 March 2023 / Published: 4 April 2023
(This article belongs to the Section Mathematics)

Abstract

:
The symmetric function class interacts heavily with other types of functions. One of these is the pre-invex function class, which is strongly related to symmetry theory. This paper proposes a novel fuzzy fractional extension of the Hermite-Hadamard, Hermite-Hadamard-Fejér, and Pachpatte type inequalities for up and down pre-invex fuzzy-number-valued mappings. Using fuzzy fractional operators, several generalizations have been developed, where well-known results fit as particular cases. Additionally, some non-trivial examples are included to support the discussion and the applicability of the key findings. The approach appears trustworthy and effective for dealing with various nonlinear problems in science and engineering. The findings are general and may constitute contributions to complex waveform theory.

1. Introduction

In the literature on mathematical inequalities, the Hermite–Hadamard (HH) inequality emerges as an important, and frequently utilized, result [1,2,3,4,5,6,7,8,9,10]. Other classical and significant inequalities include the Beckenbach–Dresher, Gagliardo–Nirenberg, Hardy, Hölder, Ky Fan, Levinson, Lynger, Minkowski, Olsen, Opial, Ostrowski, Young, arithmetic–geometric, and others [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25].
For a convex mapping Υ : K R on convex set K , the HH inequality is written as
Υ ρ + μ 2 1 μ ρ ρ μ Υ ϰ d ϰ Υ ρ + Υ μ 2 ,
For all  ρ , μ K , with ρ μ . If Υ is concave, then (1) is reversed.
The HH inequality (1), as well as some generalizations, converses, and modifications [26,27,28,29,30,31,32,33,34,35,36,37,38,39], plays a significant role in many scientific disciplines, including statistics, electrical engineering, economics and finance, information sciences, and coding theory.
The notion of convexity has been used in different areas of technology and science. Convex functions and convex sets have been generalized in the scope of numerous fields due to their robustness. The convexity of a function has been demonstrated to exist only when it fulfills an integral inequality (1).
As novel fractional differential and integral operators with exponential kernels emerged as useful tools in several subjects, it became possible to provide novel classes of functional variants for harmonically convex functions, as well as generalizations in the scope of convexity theory.
An important generalization of the HH inequality is the HH–Fejér inequality [40]. Let us consider Υ : K R a convex mapping on a convex set K , and ρ , μ K with ρ μ . Then, we have
Υ ρ + μ 2 1 ρ μ C ϰ d ϰ ρ μ Υ ϰ C ϰ d ϰ Υ ρ + Υ μ 2 .
If C ϰ = 1 , then we obtain (1) from (2). For a concave mapping, (2) is reversed. Different inequalities can be derived using distinct symmetric convex mappings, C ϰ .
Classical calculus underwent enormous development in the last few decades. As an extension of the classical differentiation and integration to non-integer orders, fractional calculus has increased relevance. Indeed, fractional operators can better depict real-world phenomena involving memory and hereditary properties. For instance, Baleanu et al. [41], Miller and Ross [42], and Kilbas et al. [43] discussed numerous applications and extensive methodologies of fractional calculus. The authors of [44,45,46,47,48,49,50,51,52,53,54] provide an overview of many fractional operators.
It has been shown that fractional differential equations capture complex systems’ dynamics more precisely than integer-order ones. Several applications can be found in cosmology, environmental sciences, medicine, biology, materials, image and signal processing, and many other fields.
Fractional integral inequalities are used in the scope of district subjects (please see [55,56,57,58,59,60,61,62,63,64,65,66] and references therein). The calculus of variations in the area of applied sciences has been widely addressed and has become an appealing research-oriented field to address the existence and uniqueness of solutions to fractional equations. For instance, Adil Khan et al. [67] derived the HH inequality for s-convex functions, while Khan et al. [68] considered weighted generalizations of the HH inequality for interval-valued exponential trigonometric functions. For more information, see [69,70,71,72,73,74,75,76,77,78,79,80] and the references therein.
Khan et al. extended the idea of convex interval-valued mappings (I·V·Ms) and convex fuzzy-number-valued mappings ( F N V M s) by using fuzzy-order relations, such that convex F N V M s include (h1, h2)-convex F N V M s [81] and harmonic convex F N V M s [82]. Moreover, in order to illustrate inequalities of HH, HH–Fejér, and Pachpatte types, they adopted h-pre-invex F N V M s [83], (h1, h2)-pre-invex F N V M s [84], and higher-order pre-invex F N V M s [85]. In recent research, Khan et al. [86] proposed new forms of HH and HH–Fejér inequalities by using the concept of fuzzy Riemann–Liouville (RL) fractional integrals via up and down (UD) pre-invex F N V M s. For up-to-date advancements in fuzzy-interval-valued analysis of integral inequalities, please see [87,88,89,90,91,92,93,94,95,96,97,98] and the references therein.
Based on the aforementioned ideas, in this paper, we establish HH, HH–Fejér, and Pachpatte type integral inequalities for UD pre-invex F N V M s using the fuzzy fractional integral operator for inferable functions. Additionally, we show complete agreement between the suggested approach and existing results. The new approach appears reliable and effective for dealing with various nonlinear problems in the scope of science and engineering. The findings are general and may constitute contributions to complex waveform theory.

2. Preliminary Concepts and Definitions

We recall a few definitions that will be relevant in what follows.
Let us consider that X o is the space of all closed and bounded intervals of R , and that M X o is given by
M = M * , M * = ϰ R | M * ϰ M * , M * , M * R .
If M * = M * , then we say that M is degenerate. In the follow-up, all intervals are considered non-degenerate. If M * 0 , then we say that M is positive. We denote by X o + = M * , M * : M * , M * X o   a n d   M * 0 the set of all positive intervals.
Let u R and u M be given by
u M = u M * , u M *   if   u > 0 , 0     if   u = 0 , u M * , u M *   if   u < 0 .
We consider the Minkowski sum, M + W , product, M × W , and difference, W M , for M , W X o , as
W * , W * + M * , M * = W * + M * , W * + M * ,
W * , W * × M * , M * = m i n W * M * , W * M * , W * M * , W * M * , m a x W * M * , W * M * , W * M * , W * M *
W * , W * M * , M * = W * M * , W * M * .
Remark 1.
(i) 
For a given  W * , W * , M * , M * X o ,  the relation I , defined on X o  by
M * , M * I W * , W *   i f   a n d   o n l y   i f   M * W * , W * M *
for all  W * , W * , M * , M * X o ,  is considered a partial interval inclusion relation. Moreover,  M * , M * I W * , W *  coincides with M * , M * W * , W *  on X o .  The relation I  is of UD order (see [96]).
(ii) 
For a given  W * , W * , M * , M * X o ,  the relation I , defined on X o  by W * , W * I M * , M *  if and only if W * M * , W * M *  or W * M * , W * < M * , is a partial interval order relation. In addition, we have that W * , W * I M * , M *  coincides with W * , W * M * , M *  on X o .  The relation I  is of left and right (LR) type [95,96].
Given the intervals  W * , W * , M * , M * X o ,  we consider their Hausdorff–Pompeiu distance as 
d H W * , W * , M * , M * = m a x W * M * , W * M * .
We have that X o , d H is a complete metric space [89,93,94].
Definition 1
([88]). A fuzzy subset  L of R is a mapping  M ~ : R [ 0,1 ] , which is the denoted membership mapping of  L . We adopt the symbol  to represent the set of all fuzzy subsets of  R .
Let us consider M ~ . If the following properties hold, then we say that M ~ is a fuzzy number:
(1)
M ~ is normal if there exists ϰ R and M ~ ϰ = 1 ;
(2)
M ~ is upper semi-continuous on R if for ϰ R there exist ε > 0 and δ > 0 , yielding M ~ ϰ M ~ y < ε for all y R with ϰ y < δ ;
(3)
M ~ is fuzzy convex, meaning that M ~ 1 u ϰ + u y m i n M ~ ϰ , M ~ y , for all ϰ , y R , and u [ 0,1 ] ;
(4)
M ~ is compactly supported, which means that c l ϰ R | M ~ ϰ > 0 is compact.
The symbol o will be adopted to designate the set of all fuzzy numbers of R .
Definition 2
([88,89]). For M ~ o , the b -level, or b -cut, sets of M ~  are M ~ b = ϰ R | M ~ ϰ > b  for all b [ 0 , 1 ] , and M ~ 0 = ϰ R | M ~ ϰ > 0 .
Proposition 1
([90]). Let M ~ , W ~ o . The relation F , defined on o  by
M ~ F W ~   w h e n   a n d   o n l y   w h e n   M ~ b I W ~ b ,   f o r   e v e r y   b [ 0 , 1 ] ,
is an LR order relation.
Proposition 2
([86]). Let M ~ , W ~ o . The relation  F , defined on  o by
M ~ F W ~   when   and   only   when   M ~ b I W ~ b ,   for   every   b [ 0 , 1 ] ,
is a UD order relation.
If M ~ , W ~ E I and u R , then, for every b 0 , 1 , the arithmetic operations, addition “ M ~ W ~ ”, multiplication “ M ~ W ~ ”, and multiplication by scalar “ u M ~ ” can be characterized level-wise, respectively, by
M ~ W ~ b = M ~ b + W ~ b ,
M ~ W ~ b = M ~ b × W ~ b ,
u M ~ b = u . M ~ b
These operations follow directly from Equations (4)–(6), respectively.
Theorem 1
([89]). For M ~ , W ~ o , the supremum metric
d M ~ , W ~ = sup 0 b 1 d H M ~ b , W ~ b
is a complete metric space, where  H stands for the Hausdorff metric on a space of intervals.
Theorem 2
([89,90]). If Υ : [ ρ , μ ] R X o  is an I-V·M satisfying Υ ϰ = Υ * ϰ , Υ * ϰ , then Υ  is Aumann integrable (IA-integrable) over [ ρ , μ ]  when and only when Υ * ϰ  and Υ * ϰ  are integrable over ρ , μ , meaning
I A ρ μ Υ ϰ d ϰ = ρ μ Υ * ϰ d ϰ , ρ μ Υ * ϰ d ϰ .
Definition 3
([95]). Let Υ ~ : I R o  be an F N V M . The family of I-V·Ms, for every b 0 , 1 , is Υ b : I R X o  satisfying Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b  for every ϰ I .  For every b 0 , 1 ,  the lower and upper mappings of Υ b  are the end point real-valued mappings Υ * · , b , Υ * · , b : I R .
Definition 4
([95]). Let Υ ~ : I R o  be an F N V M . Then, Υ ~ ϰ  is continuous at ϰ I ,  if for every b 0 , 1 , Υ b ϰ  is continuous when and only when Υ * ϰ , b  and Υ * ϰ , b  are continuous at ϰ I .
Definition 5
([89]). Let Υ ~ : [ ρ , μ ] R o  be an F N V M . The fuzzy Aumann integral ( F A -integral) of Υ ~  over ρ , μ  is
F A ρ μ Υ ~ ϰ d ϰ b = I A ρ μ Υ b ϰ d ϰ = ρ μ Υ ϰ , b d ϰ : Υ ϰ , b S Υ b ,
where S Υ b = Υ . , b R : Υ . , b   i s   i n t e g r a b l e ,   a n d   Υ ϰ , b Υ b ϰ for every b 0 , 1 .  Moreover, Υ ~  is F A -integrable over [ ρ , μ ]  if F A ρ μ Υ ~ ϰ d ϰ o .
Theorem 3
([90]). Let Υ ~ : [ ρ , μ ] R o  be an F N V M  whose b -levels define the family of I-V·Ms Υ b : [ ρ , μ ] R X o  satisfying Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b  for every ϰ [ ρ , μ ]  and b 0 , 1 .   Υ ~ is F A -integrable over [ ρ , μ ]  when and only when Υ * ϰ , b  and Υ * ϰ , b  are integrable over [ ρ , μ ] . Moreover, if Υ ~  is F A -integrable over ρ , μ , we have
F A ρ μ Υ ~ ϰ d ϰ b = ρ μ Υ * ϰ , b d ϰ , ρ μ Υ * ϰ , b d ϰ = I A ρ μ Υ b ϰ d ϰ
for every  b 0 , 1 .
Definition 6
([32]). Let β > 0 and L ρ , μ , o  be the collection of all Lebesgue measurable fuzzy-number-valued mappings on [ ρ , μ ] . Then, the fuzzy left and right RL fractional integrals of order β > 0  of Υ L ρ , μ , o are
I ρ + β Υ ~ ϰ = 1 Γ ( β ) ρ ϰ ϰ m β 1 Υ ~ m   d m ,     ϰ > ρ ,
and
I μ β Υ ~ ϰ = 1 Γ ( β ) ϰ μ m ϰ β 1 Υ ~ m   d m ,     ( ϰ < μ )
respectively, where  Γ ϰ = 0 m ϰ 1 e m   d m is the Euler gamma function. The fuzzy left and right RL fractional integrals ϰ based on left and right end point mappings are
I ρ + β Υ ~ ϰ b = 1 Γ β ρ ϰ ϰ m β 1 Υ b m   d m = 1 Γ ( β ) ρ ϰ ϰ m β 1 Υ * m , b , Υ * m , b   d m , ϰ > ρ ,
where
I ρ + β Υ * ϰ , b = 1 Γ ( β ) ρ ϰ ϰ m β 1 Υ * m , b   d m ,     ϰ > ρ ,
and
I ρ + β Υ * ϰ , b = 1 Γ ( β ) ρ ϰ ϰ m β 1 Υ * m , b   d m ,     ϰ > ρ .
The RL fractional integral Υ ~ of ϰ based on left and right end point mappings can be defined in a similar way.
An interval-valued mapping Υ : I = ρ , μ X o is a convex interval-valued mapping if
Υ u ϰ + 1 u y u Υ ϰ + ( 1 u ) Υ y ,
For all ϰ , y ρ , μ , u 0 , 1 , where X o is the collection of all real-valued intervals. If (24) is reversed, then Υ is said to be concave (see [91]).
Definition 7
([87]). The F N V M Υ ~ : ρ , μ o is convex on ρ , μ  if
Υ ~ u ϰ + 1 u y F u Υ ~ ϰ ( 1 u ) Υ ~ y ,
for all  ϰ , y ρ , μ , u 0 , 1 , where  Υ ~ ϰ F 0 ~ for all  ϰ ρ , μ . If (25) is reversed, then  Υ ~ is said to be concave. Moreover,  Υ ~ is named affine if and only if it is convex and concave.
Definition 8
([96]). The F N V M   Υ ~ : ρ , μ o is UD convex on ρ , μ  if
Υ ~ u ϰ + 1 u y F u Υ ~ ϰ ( 1 u ) Υ ~ y ,
for all  ϰ , y ρ , μ , u 0 , 1 , where  Υ ~ ϰ F 0 ~ for all  ϰ ρ , μ . If (26) is reversed then,  Υ ~ is UD concave. Moreover,  Υ ~ is named UD affine if and only if it is UD convex and concave.
Definition 9
([44]). Let K  be an invex set. The F N V M   Υ ~ : K o is UD pre-invex on K  with respect to φ  if
Υ ~ ϰ + 1 u φ y , ϰ F u Υ ~ ϰ 1 u Υ ~ y ,
for all  ϰ , y K , u 0 , 1 , where  Υ ~ ϰ F 0 ~ ,   φ : K × K R . The mapping  Υ ~ is UD pre-incave on  K with respect to  φ if (27) is reversed.
Theorem 4
([4]). Let Υ ~ : [ ρ , μ ] o  be an F N V M  whose b -levels describe the family of I-V·Ms Υ b : [ ρ , μ ] X o + X o  as
Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b ,
for all  ϰ [ ρ , μ ] and all  b 0 , 1 . The  Υ ~ is UD pre-invex on  [ ρ , μ ] if and only if for all  b 0 , 1 ,   Υ * ϰ , b is pre-invex and  Υ * ϰ , b is pre-incave.
Definition 10
([4]). Let Υ ~ : [ ρ , μ ] o  be an F N V M  whose b -levels describe the family of I-V·Ms Υ b : [ ρ , μ ] C o + C o  as
Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b ,
for all  ϰ [ ρ , μ ] and all  b 0 , 1 . Then,  Υ ~ is lower UDpre-invex (pre-incave) on  [ ρ , μ ] if and only if for all  b 0 , 1 ,
Υ * ϰ + 1 u φ y , ϰ , b u Υ * ϰ , b + 1 u Υ * y , b ,
and
Υ * ϰ + 1 u φ y , ϰ , b = u Υ * ϰ , b + 1 u Υ * y , b .
Definition 11
([4]). Let Υ ~ : [ ρ , μ ] o  be an F N V M  whose b -levels describe the family of I-V·Ms Υ b : [ ρ , μ ] C o + C o  as
Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b ,
for all  ϰ [ ρ , μ ] and all  b 0 , 1 . Then,  Υ ~ is upper UD pre-invex (pre-incave) on  [ ρ , μ ] if and only if for all  b 0 , 1 ,
Υ * ϰ + 1 u φ y , ϰ , b = u Υ * ϰ , b + 1 u Υ * y , b ,
and
Υ * ϰ + 1 u φ y , ϰ , b u Υ * ϰ , b + 1 u Υ * y , b .
Remark 2
([4]). Both concepts UD pre-invex F N V M  and pre-invex F N V M  concide when Υ ~  is a lower UD pre-invex F N V M , see [84].
Assumption 1
([7]). Let us assume that K is an invex set with respect to the bi-function  φ : K × K R .  For any  ρ , μ K and  u 0 , 1 , so it yields
φ μ , ρ + u φ ( μ , ρ ) = 1 u φ μ , ρ ,
φ ρ , ρ + u φ ( μ , ρ ) = u φ μ , ρ .
For  u = 0, we have  φ μ , ρ = 0 if and only if  μ = ρ , and for all  ρ , μ K .
For more details on Assumption 1, please see references [83,84,85,86].

3. Main Results

We develop new results on the well-known fractional HH and HH–Fejér inequalities in the scope of UD pre-invex F N V M s. In the follow-up, we denote by L ρ , ρ + φ μ , ρ , 0 the family of Lebesgue measurable F N V M s.
Theorem 5.
Let Υ ~ : ρ , ρ + φ μ , ρ 0  be a UD pre-invex F N V M  on ρ , ρ + φ μ , ρ  whose b -levels define the family of I⋅V⋅Ms Υ b : ρ , ρ + φ μ , ρ R X o +  as Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b  for all  ϰ ρ , ρ + φ μ , ρ  and for all b 0 , 1 . If φ  satisfies Assumption 1 and Υ ~ L ρ , ρ + φ μ , ρ , 0 , then
Υ ~ 2 ρ + φ μ , ρ 2 F Γ β + 1 2 φ μ , ρ β I ρ + β Υ ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ                         F Υ ~ ρ Υ ~ ρ + φ μ , ρ 2 F Υ ~ ρ Υ ~ μ 2 .
If  Υ ~ ( ϰ )  is UD pre-incave, then
Υ ~ 2 ρ + φ μ , ρ 2 F Γ β + 1 2 φ μ , ρ β I ρ + β Υ ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ                         F Υ ~ ρ Υ ~ ρ + φ μ , ρ 2 F Υ ~ ρ Υ ~ μ 2 .
Proof. 
Let Υ ~ : ρ , ρ + φ μ , ρ 0 be a UD pre-invex F N V M . If Assumption 1 is verified, then we have
2 Υ ~ 2 ρ + φ μ , ρ 2 F Υ ~ ρ + 1 u φ μ , ρ Υ ~ ρ + u φ μ , ρ .
Therefore, for every b [ 0 , 1 ] , we have
2 Υ * 2 ρ + φ μ , ρ 2 , b Υ * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b , 2 Υ * 2 ρ + φ μ , ρ 2 , b Υ * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b .
By multiplying both sides by u β 1 and integrating the result with respect to u over ( 0,1 ) , it yields
2 0 1 u β 1 Υ * 2 ρ + φ μ , ρ 2 , b d u 0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b d u , 2 0 1 u β 1 Υ * 2 ρ + φ μ , ρ 2 , b d u 0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b d u .
Let ϰ = ρ + 1 u φ μ , ρ and y = ρ + u φ μ , ρ . Then, we get
2 β Υ * 2 ρ + φ μ , ρ 2 , b 1 φ μ , ρ β ρ ρ + φ μ , ρ ρ + φ μ , ρ y β 1 Υ * y , b d y + 1 φ μ , ρ β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * ϰ , b d ϰ Γ β φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b 2 β Υ * 2 ρ + φ μ , ρ 2 , b 1 φ μ , ρ β ρ ρ + φ μ , ρ ρ + φ μ , ρ y β 1 Υ * y , b d y + 1 φ μ , ρ β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * ϰ , b d ϰ Γ β φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b .
That is,
2 β Υ * 2 ρ + φ μ , ρ 2 , b , Υ * 2 ρ + φ μ , ρ 2 , b I Γ β φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b , I ρ + β Υ * ρ + φ μ , ρ , b + I μ β Υ * ρ + φ μ , ρ , b .
Thus,
2 β Υ ~ 2 ρ + φ μ , ρ 2 F Γ ( β ) φ μ , ρ β I ρ + β Υ ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ .
Adopting a similar procedure, we have
Γ ( β ) φ μ , ρ β [ I ρ + β Υ ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ ] F Υ ~ ρ Υ ~ ρ + φ μ , ρ 2 F Υ ~ ρ Υ ~ μ 2 .
Combining (37) and (38) yields
Υ ~ 2 ρ + φ μ , ρ 2 F Γ β + 1 2 φ μ , ρ β [ I ρ + β Υ ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ ] F Υ ~ ρ Υ ~ ρ + φ μ , ρ 2 F Υ ~ ρ Υ ~ μ 2 .
Thus, this concludes the proof. □
Remark 3.
If φ ϰ , y = ϰ y , then, from Theorem 5, we get [86]
Υ ~ ρ + μ 2 F Γ β + 1 2 μ ρ β I ρ + β Υ ~ μ I μ β Υ ~ ρ F Υ ~ ρ Υ ~ μ 2
Let us assume β = 1 . Then, Theorem 5 yields the result for a pre-invex F N V M [4]
Υ ~ 2 ρ + φ μ , ρ 2 F 1 φ μ , ρ ρ ρ + φ μ , ρ Υ ~ ϰ d ϰ F Υ ~ ρ Υ ~ μ 2
Let us assume β = 1 and φ ϰ , y = ϰ y . Then, Theorem 5 yields the result for convex F N V M [86]
Υ ~ ρ + μ 2 F 1 μ ρ ρ μ Υ ~ ϰ d ϰ F Υ ~ ρ Υ ~ μ 2
If Υ ~ is a lower UD pre-invex F N V M , then, from Theorem 5, we get [83]
Υ ~ 2 ρ + φ μ , ρ 2 F Γ β + 1 2 φ μ , ρ β I ρ + β Υ ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ F Υ ~ ρ Υ ~ ρ + φ μ , ρ 2 F Υ ~ ρ Υ ~ μ 2 .
If Υ ~ is a lower UD pre-invex F N V M with φ ϰ , y = ϰ y , then, from Theorem 5, we get (see [83])
Υ ~ ρ + μ 2 F Γ β + 1 2 μ ρ β I ρ + β Υ ~ μ I μ β Υ ~ ρ F Υ ~ ρ Υ ~ μ 2
Let us consider β = 1 and Υ ~ a lower UD pre-invex F N V M . Then, Theorem 5 yields the result for pre-invex F N V M (see [84])
Υ ~ 2 ρ + φ μ , ρ 2 F 1 φ μ , ρ ρ ρ + φ μ , ρ Υ ~ ϰ d ϰ F Υ ~ ρ Υ ~ μ 2
Let us consider β = 1 and Υ ~ a lower UD pre-invex F⋅N⋅V⋅M  φ ϰ , y = ϰ y . Then, Theorem 5 yields the result for a convex F N V M (see [81])
Υ ~ ρ + μ 2 F 1 μ ρ ρ μ Υ ~ ϰ d ϰ F Υ ~ ρ Υ ~ μ 2
Let us assume that β = 1 = b and Υ * ( ϰ , b ) = Υ * ( ϰ , b ) with φ ϰ , y = ϰ y . Then, from Theorem 5, we obtain the classical HH–Fejér type inequality.
Example 1.
Let  β = 1 2 , ϰ 2,2 + φ 3,2  and the F N V M Υ ~ : ρ , ρ + φ μ , ρ = 2 , 2 + φ 3,2 0  be defined as
Υ ~ ϰ θ = θ 2 + ϰ 1 2 1 + ϰ 1 2       θ 2 ϰ 1 2 , 3 2 + ϰ 1 2 θ ϰ 1 2 + 1       θ ( 3 , 2 + ϰ 1 2 ] 0             o t h e r w i s e .
For each b 0 , 1 , we have Υ b ϰ = 1 b 2 ϰ 1 2 + 3 b , 1 b 2 + ϰ 1 2 + 3 b . Since the left and right end point functions Υ * ϰ , b = 1 b 2 ϰ 1 2 + 3 b and Υ * ϰ , b = 1 b 2 + ϰ 1 2 + 3 b are pre-invex functions with respect to φ μ , ρ = μ ρ , for each b [ 0 , 1 ] , Υ ~ ϰ is a UD pre-invex F N V M . We verify that Υ ~ L ρ , ρ + φ μ , ρ , 0 and
Υ * 2 ρ + φ μ , ρ 2 , b = Υ * 5 2 , b = 1 b 4 10 2 + 3 b , Υ * 2 ρ + φ μ , ρ 2 , b = Υ * 5 2 , b = 1 b 4 + 10 2 + 3 b , Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 = 1 b 4 2 3 2 + 3 b , Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 = 1 b 4 + 2 + 3 2 + 3 b .
Note that
Γ ( β + 1 ) 2 ( φ μ , ρ ) β I ρ + β Υ * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b = Γ ( 3 2 ) 2 1 π 2 2 + φ 3,2 3 ϰ 1 2 . 1 b 2 ϰ 1 2 + 3 b d ϰ + Γ ( 3 2 ) 2 1 π 2 2 + φ 3,2 ϰ 2 1 2 . 1 b 2 ϰ 1 2 + 3 b d ϰ         = 1 4 1 b 7393 10,000 + 9501 10,000 + 3 b    = 1 b 8447 20,000 + 3 b , Γ ( β + 1 ) 2 ( φ μ , ρ ) β I ρ + β Υ * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b      = Γ ( 3 2 ) 2 1 π 2 2 + φ 3,2 3 ϰ 1 2 . 1 b 2 + ϰ 1 2 + 3 b d ϰ      + Γ ( 3 2 ) 2 1 π 2 2 + φ 3,2 ϰ 2 1 2 . 1 b 2 + ϰ 1 2 + 3 b d ϰ      = 1 4 1 b 7260 1000 + 7049 1000 + 3 b = 1 b 14,309 4000 + 3 b .
Therefore,
1 b 4 10 2 + 3 b , 1 b 4 + 10 2 + 3 b I 1 b 8447 20,000 + 3 b , 1 b 14,309 4000 + 3 b I 1 b 4 2 3 2 + 3 b , 1 b 4 + 2 + 3 2 + 3 b ,
and Theorem 5 is verified.
We now introduce some new forms of fuzzy-interval fractional HH type inequalities for the product of UD pre-invex F N V M s, which are known as inequalities of Pachpatte type.
Theorem 6.
Let Υ ~ , J ~ : ρ , ρ + φ μ , ρ 0  be two UD pre-invex F N V M s on ρ , ρ + φ μ , ρ  whose b -levels Υ b , J b : ρ , ρ + φ μ , ρ R X o +  are defined by Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b  and J b ϰ = J * ϰ , b , J * ϰ , b  for all ϰ ρ , ρ + φ μ , ρ  and for all b 0 , 1 . If Υ ~ J ~ L ρ , ρ + φ μ , ρ , 0  and φ  satisfies Assumption 1, then
Γ β 2 φ μ , ρ β I ρ + β Υ ~ ρ + φ μ , ρ J ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ J ~ ρ F 1 2 β ( β + 1 ) ( β + 2 ) B ~ ρ , ρ + φ μ , ρ β ( β + 1 ) ( β + 2 ) D ~ ρ , ρ + φ μ , ρ .
where  B ~ ρ , ρ + φ μ , ρ = Υ ~ ρ J ~ ρ Υ ~ ρ + φ μ , ρ J ~ ρ + φ μ , ρ ,   D ~ ρ , ρ + φ μ , ρ = Υ ~ ρ J ~ ρ + φ μ , ρ Υ ~ ρ + φ μ , ρ J ~ ρ ,   B b ρ , ρ + φ μ , ρ = B * ρ , ρ + φ μ , ρ , b , B * ρ , ρ + φ μ , ρ , b , and  D b ρ , μ = D * ρ , ρ + φ μ , ρ , b , D * ρ , ρ + φ μ , ρ , b .
Proof. 
Since Υ ~ , J ~ are UD pre-invex F N V M s and Assumption 1 holds f o r   φ , then for each b 0 , 1 we have
Υ * ρ + 1 u φ μ , ρ , b = Υ * ρ + φ μ , ρ + u φ ρ , ρ + φ μ , ρ , b u Υ * ρ , b + 1 u Υ * ρ + φ μ , ρ , b Υ * ρ + 1 u φ μ , ρ , b = Υ * ρ + φ μ , ρ + u φ ρ , ρ + φ μ , ρ , b u Υ * ρ , b + 1 u Υ * ρ + φ μ , ρ , b
and
J * ρ + 1 u φ μ , ρ , b = J * ρ + φ μ , ρ + u φ ρ , ρ + φ μ , ρ , b u J * ρ , b + 1 u J * ρ + φ μ , ρ , b J * ρ + 1 u φ μ , ρ , b = J * ρ + φ μ , ρ + u φ ρ , ρ + φ μ , ρ , b u J * ρ , b + 1 u J * ρ + φ μ , ρ , b .
From the UD pre-invex F N V M definition, we get 0 ~ F Υ ~ ϰ and 0 ~ F J ϰ . Therefore,
Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b u Υ * ρ , b + 1 u Υ * ρ + φ μ , ρ , b u J * ρ , b + 1 u J * ρ + φ μ , ρ , b = u 2 Υ * ρ , b × J * ρ , b + 1 u 2 Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + u 1 u Υ * ρ , b × J * ρ + φ μ , ρ , b + u 1 u Υ * ρ + φ μ , ρ , b × J * ρ , b , Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b u Υ * ρ , b + 1 u Υ * ρ + φ μ , ρ , b u J * ρ , b + 1 u J * ρ + φ μ , ρ , b = u 2 Υ * ρ , b × J * ρ , b + 1 u 2 Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + u 1 u Υ * ρ , b × J * ρ + φ μ , ρ , b + u 1 u Υ * ρ + φ μ , ρ , b × J * ρ , b .
Analogously, we have
Υ * ρ + u φ μ , ρ , b J * ρ + u φ μ , ρ , b 1 u 2 Υ * ρ , b × J * ρ , b + u 2 Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + u 1 u Υ * ρ , b × J * ρ + φ μ , ρ , b + u 1 u Υ * ρ + φ μ , ρ , b × J * ρ , b , Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b 1 u 2 Υ * ρ , b × J * ρ , b + u 2 Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + u 1 u Υ * ρ , b × J * ρ + φ μ , ρ , b + u 1 u Υ * ρ + φ μ , ρ , b × J * ρ , b .
Adding (48) and (49), we have
Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b u 2 + 1 u 2 Υ * ρ , b × J * ρ , b + Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + 2 u 1 u Υ * ρ + φ μ , ρ , b × J * ρ , b + Υ * ρ , b × J * ρ + φ μ , ρ , b , Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b u 2 + 1 u 2 Υ * ρ , b × J * ρ , b + Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + 2 u 1 u Υ * ρ + φ μ , ρ , b × J * ρ , b + Υ * ρ , b × J * ρ + φ μ , ρ , b .
Multiplying (50) by u β 1 and integrating the result with respect to u over (0,1), we obtain
0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + u β 1 Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b d u B * ρ , ρ + φ μ , ρ , b 0 1 u β 1 u 2 + 1 u 2 d u + 2 D * ρ , ρ + φ μ , ρ , b 0 1 u β 1 u 1 u d u , 0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + u β 1 Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b d u B * ρ , ρ + φ μ , ρ , b 0 1 u β 1 u 2 + 1 u 2 d u + 2 D * ρ , ρ + φ μ , ρ , b 0 1 u β 1 u 1 u d u .
It follows that
Γ β φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b × J * ρ , b 2 β 1 2 β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b + 2 β β β + 1 β + 2 D * ρ , ρ + φ μ , ρ , b , Γ β φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b × J * ρ , b 2 β 1 2 β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b + 2 β β β + 1 β + 2 D * ρ , ρ + φ μ , ρ , b ,
That is,
Γ β φ μ , ρ β [ I ρ + β Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b × J * ρ , b , I ρ + β Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b × J * ρ , b ] I 2 β 1 2 β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b , B * ρ , ρ + φ μ , ρ , b + 2 β β ( β + 1 ) ( β + 2 ) D * ρ , ρ + φ μ , ρ , b , D * ρ , ρ + φ μ , ρ , b .
Therefore,
Γ β 2 φ μ , ρ β I ρ + β Υ ~ ρ + φ μ , ρ J ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ J ~ ρ F 1 2 β ( β + 1 ) ( β + 2 ) B ~ ρ , ρ + φ μ , ρ β β + 1 β + 2 D ~ ρ , ρ + φ μ , ρ ,
and, thus, the theorem is proven. □
Theorem 7.
Let Υ ~ , J ~ : ρ , ρ + φ μ , ρ 0  be two UD pre-invex F N V M s whose b -levels define the family of I V M s Υ b , J b : ρ , ρ + φ μ , ρ R X o +  given by Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b  and J b ϰ = J * ϰ , b , J * ϰ , b  for all ϰ ρ , ρ + φ μ , ρ  and for all b 0 , 1 . If Υ ~ J ~ L ρ , ρ + φ μ , ρ , 0  and φ  satisfies Assumption 1, then
1 β Υ ~ 2 ρ + φ μ , ρ 2 J ~ 2 ρ + φ μ , ρ 2 F Γ β + 1 4 φ μ , ρ β I ρ + β Υ ~ ρ + φ μ , ρ J ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ J ~ ρ 1 2 β 1 2 β β + 1 β + 2 D ~ ρ , ρ + φ μ , ρ 1 2 β β β + 1 β + 2 B ~ ρ , ρ + φ μ , ρ ,
where  B ~ ρ , ρ + φ μ , ρ = Υ ~ ρ J ~ ρ Υ ~ ρ + φ μ , ρ J ~ ρ + φ μ , ρ ,   D ~ ρ , μ = Υ ~ ρ J ~ ρ + φ μ , ρ Υ ~ ρ + φ μ , ρ J ~ ρ ,   B b ρ , ρ + φ μ , ρ = B * ρ , ρ + φ ρ + φ μ , ρ , b , B * ρ , ρ + φ μ , ρ , b , and  D b ρ , ρ + φ μ , ρ = D * ρ , ρ + φ μ , ρ , b , D * ρ , ρ + φ μ , ρ , b .
Proof. 
Consider that Υ ~ , J ~ : ρ , ρ + φ μ , ρ 0 are UD pre-invex F N V M s . By hypothesization, for each b 0 , 1 , we have
Υ * 2 ρ + φ μ , ρ 2 , b × J * 2 ρ + φ μ , ρ 2 , b Υ * 2 ρ + φ μ , ρ 2 , b × J * 2 ρ + φ μ , ρ 2 , b 1 4 Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + 1 u φ μ , ρ , b × J * ρ + u φ μ , ρ , b + 1 4 Υ * ρ + u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b 1 4 Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + 1 u φ μ , ρ , b × J * ρ + u φ μ , ρ , b + 1 4 Υ * ρ + u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b , 1 4 Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b + 1 4 u Υ * ρ , b + 1 u Υ * ρ + φ μ , ρ , b × 1 u J * ρ , b + u J * ρ + φ μ , ρ , b + 1 u Υ * ρ , b + u Υ * ρ + φ μ , ρ , b × u J * ρ , b + 1 u J * ρ + φ μ , ρ , b 1 4 Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b + 1 4 u Υ * ρ , b + 1 u Υ * ρ + φ μ , ρ , b × 1 u J * ρ , b + u J * ρ + φ μ , ρ , b + 1 u Υ * ρ , b + u Υ * ρ + φ μ , ρ , b × u J * ρ , b + 1 u J * ρ + φ μ , ρ , b , = 1 4 Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b + 1 4 u 2 + 1 u 2 D * ρ , ρ + φ μ , ρ , b + u 1 u + 1 u u B * ρ , ρ + φ μ , ρ , b , = 1 4 Υ * ρ + 1 u φ μ , ρ , b × J * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b × J * ρ + u φ μ , ρ , b + 1 4 u 2 + 1 u 2 D * ρ , ρ + φ μ , ρ , b + u 1 u + 1 u u B * ρ , ρ + φ μ , ρ , b .
Multiplying (52) with u β 1 and integrating over ( 0 , 1 ) , we get
1 β Υ * 2 ρ + φ μ , ρ 2 , b × J * 2 ρ + φ μ , ρ 2 , b 1 4 φ μ , ρ β ρ ρ + φ μ , ρ ρ + φ μ , ρ ϰ β 1 Υ * ϰ , b × J * ϰ , b d ϰ + ρ ρ + φ μ , ρ y ρ β 1 Υ * y , b × J * y , b d y + 1 2 β 1 2 β β + 1 β + 2 D * ρ , ρ + φ μ , ρ , b + 1 2 β β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b = Γ β + 1 4 φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ × J * ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * ρ × J * ρ + 1 2 β 1 2 β β + 1 β + 2 D * ρ , ρ + φ μ , ρ , b + 1 2 β β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b , 1 β Υ * 2 ρ + φ μ , ρ 2 , b × J * 2 ρ + φ μ , ρ 2 , b 1 4 φ μ , ρ β ρ ρ + φ μ , ρ ρ + φ μ , ρ ϰ β 1 Υ * ϰ , b × J * ϰ , b d ϰ + ρ ρ + φ μ , ρ y ρ β 1 Υ * y , b × J * y , b d y + 1 2 β 1 2 β β + 1 β + 2 D * ρ , ρ + φ μ , ρ , b + 1 2 β β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b = Γ β + 1 4 φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ × J * ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * ρ × J * ρ + 1 2 β 1 2 β β + 1 β + 2 D * ρ , ρ + φ μ , ρ , b + 1 2 β β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b ,
That is,
1 β Υ ~ 2 ρ + φ μ , ρ 2 × ~ J ~ 2 ρ + φ μ , ρ 2               F Γ β + 1 4 φ μ , ρ β I ρ + β Υ ~ ρ + φ μ , ρ J ~ ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ ρ J ~ ρ    1 2 β 1 2 β β + 1 β + 2 D ~ ρ , ρ + φ μ , ρ 1 2 β β β + 1 β + 2 B ~ ρ , ρ + φ μ , ρ .
Thus, this concludes the proof. □
Example 2.
Let  ρ , ρ + φ μ , ρ = [ 0 , φ 2,0 ] , β = 1 2 , Υ ~ ϰ = ϰ , 2 ϰ , and  J ~ ϰ = ϰ , 3 ϰ ,  as
Υ ~ ϰ θ = θ ϰ     θ 0 , ϰ 2 ϰ θ ϰ    θ ( ϰ , 2 ϰ ] 0     o t h e r w i s e ,
J ~ ϰ θ = θ 2 ϰ      θ ϰ , 2 4 ϰ θ 2 ϰ    θ ( 2 , ( 2 , 8 e ϰ ] ] 0      o t h e r w i s e .
Then, for each b 0 , 1 , we have Υ b ϰ = b ϰ , ( 2 b ) ϰ and J b ϰ = 1 b ϰ + 2 b , 1 b 8 e ϰ + 2 b . Since the left and right end point functions Υ * ϰ , b = b ϰ ,   Υ * ϰ , b = ( 2 b ) ϰ , J * ϰ , b = 1 b ϰ + 2 b , and J * ϰ , b = 1 b 8 e ϰ + 2 b are pre-invex functions with respect to φ μ , ρ = μ ρ and for each b [ 0 , 1 ] , then Υ ~ ϰ and J ~ ϰ are UD pre-invex F N V M s. We see that  Υ ~ ϰ J ~ ϰ L ρ , ρ + φ μ , ρ , 0 and
Γ 1 + β 2 φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b × J * ρ , b = Γ 3 2 2 2 1 π 0 φ 2,0 2 ϰ 1 2 b 1 b ϰ 2 + 2 b 2 ϰ d ϰ + Γ 3 2 2 2 1 π 0 φ 2,0 ϰ 1 2 b 1 b ϰ 2 + 2 b 2 ϰ d ϰ = 2 15 b 4 b + 11 , Γ 1 + β 2 φ μ , ρ β I ρ + β Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b + I ρ + φ μ , ρ β Υ * ρ , b × J * ρ , b = Γ 3 2 2 2 1 π 0 φ 2,0 2 ϰ 1 2 . 1 b 2 b ϰ 8 e ϰ + 2 b 2 b ϰ d ϰ + Γ 3 2 2 2 1 π 0 φ 2,0 ϰ 1 2 . 1 b 2 b ϰ 8 e ϰ + 2 b 2 b ϰ d ϰ = 2 5 2 b 8 3 b .
Note that
1 2 β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b = [ Υ * ρ , b × J * ρ , b + Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b ] = 22 15 b , 1 2 β β + 1 β + 2 B * ρ , ρ + φ μ , ρ , b = Υ * ρ , b × J * ρ , b + Υ * ρ + φ μ , ρ , b × J * ρ + φ μ , ρ , b = 11 15 . 2 b 1 b 8 e 2 + 2 b , β β + 1 β + 2 D * ρ , ρ + φ μ , ρ , b                                = Υ * ρ , b × J * ρ + φ μ , ρ , b + Υ * ρ + φ μ , ρ , b × J * ρ , b      = 8 15 b 2 , β β + 1 β + 2 D * ρ , ρ + φ μ , ρ , b                            = Υ * ρ , b × J * ρ + φ μ , ρ , b + Υ * ρ + φ μ , ρ × J * ρ , b         = 4 15 2 b 7 5 b .
Therefore, we have
1 2 β β + 1 β + 2 B b ρ , ρ + φ μ , ρ , b + β β + 1 β + 2 D b ρ , ρ + φ μ , ρ , b = 1 15 2 b 11 + 4 b , 2 b 11 1 b 8 e 2 + 2 b + 28 .
It follows that
1 5 [ 2 3 b 11 + 4 b , 2 2 b 8 3 b ] I 1 15 2 b 11 + 4 b , 2 b 11 1 b 8 e 2 + 2 b + 28
and Theorem 7 has been illustrated.
We now obtain second and first fuzzy fractional HH–Fejér type inequalities for UD pre-invex  F N V M .
Theorem 8.
Let Υ ~ : ρ , ρ + φ μ , ρ 0  be a UD pre-invex F N V M  with ρ < + φ μ , ρ  whose b -levels define the family of I V M Υ b : ρ , ρ + φ μ , ρ R X o +  given by Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b  for all ϰ ρ , ρ + φ μ , ρ  and for all b 0 , 1 . Let Υ ~ L ρ , ρ + φ μ , ρ , 0  and C : ρ , ρ + φ μ , ρ R ,   C ( ϰ ) 0  be symmetric with respect to 2 ρ + φ μ , ρ 2 .  If φ  satisfies Assumption 1, then
I ρ + β Υ ~ C ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ C ρ F Υ ~ ρ Υ ~ ρ + φ μ , ρ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ F Υ ~ ρ Υ ~ μ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ .
If  Υ ~ is UD pre-incave, then inequality (55) is reversed.
Proof. 
Let Υ ~ be a UD pre-invex F N V M and u β 1 C ρ + 1 u φ μ , ρ 0 . Then, for each b 0 , 1 , we have
u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + 1 u φ μ , ρ u β 1 u Υ * ρ , b + 1 u Υ * ρ + φ μ , ρ , b C ρ + 1 u φ ρ + φ μ , ρ , ρ u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + 1 u φ μ , ρ u β 1 u Υ * ρ , b + 1 u Υ * ρ + φ μ , ρ , b C ρ + 1 u φ ρ + φ μ , ρ , ρ ,
and
u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ u β 1 1 u Υ * ρ , b + u Υ * ρ + φ μ , ρ , b C ρ + u φ μ , ρ u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ u β 1 1 u Υ * ρ , b + u Υ * ρ + φ μ , ρ , b C ρ + u φ μ , ρ .
Adding (56) and (57), and integrating over 0 , 1 , we get
0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + 1 u φ μ , ρ d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ d u 0 1 u β 1 Υ * ρ , b u C ρ + 1 u φ μ , ρ + 1 u C ρ + u φ μ , ρ + u β 1 Υ * ρ + φ μ , ρ , b 1 u C ρ + 1 u φ μ , ρ + u C ρ + u φ μ , ρ d u , 0 1 u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ d u + 0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + 1 u φ μ , ρ d u 0 1 u β 1 Υ * ρ , b u C ρ + 1 u φ μ , ρ + 1 u C ρ + u φ μ , ρ + u β 1 Υ * ρ + φ μ , ρ , b 1 u C ρ + 1 u φ μ , ρ + u C ρ + u φ μ , ρ d u , = Υ * ρ , b 0 1 u β 1 C ρ + 1 u φ μ , ρ d u + Υ * ρ + φ μ , ρ , b 0 1 u β 1 C ρ + u φ μ , ρ d u , = Υ * ρ , b 0 1 u β 1 C ρ + 1 u φ μ , ρ d u + Υ * ρ + φ μ , ρ , b 0 1 u β 1 C ρ + u φ μ , ρ d u .
Since C is symmetric, then
= Υ * ρ , b + Υ * ρ + φ μ , ρ , b 0 1 u β 1 C ρ + u φ μ , ρ d u , = Υ * ρ , b + Υ * ρ + φ μ , ρ , b 0 1 u β 1 C ρ + u φ μ , ρ d u . = Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 Γ ( β ) ( φ μ , ρ ) β I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ , = Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 Γ ( β ) ( φ μ , ρ ) β I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ .
Since
0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + u φ μ , ρ d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ d u = 1 ( φ μ , ρ ) β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * 2 ρ + φ μ , ρ ϰ , b C ϰ d ϰ + 1 ( φ μ , ρ ) β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * ϰ , b C ϰ d ϰ = 1 ( φ μ , ρ ) β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * ϰ , b C 2 ρ + φ μ , ρ ϰ d ϰ + 1 ( φ μ , ρ ) β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * ϰ , b C ϰ d ϰ = Γ ( β ) ( φ μ , ρ ) β I ρ + β Υ * C μ + I μ β Υ * C ρ , 0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + u φ μ , ρ d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ d u = Γ ( β ) ( φ μ , ρ ) β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ .
Then, from (58), we have
Γ β φ μ , ρ β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 Γ β φ μ , ρ β I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 Γ β φ μ , ρ β I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ , Γ β φ μ , ρ β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 Γ β φ μ , ρ β I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ Υ * ρ , b + Υ * ρ + φ μ , b 2 Γ ( β ) φ μ , ρ β I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ ,
That is,
Γ ( β ) φ μ , ρ β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ , I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ I Γ ( β ) φ μ , ρ β Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 , Υ * ρ , b + Υ * ρ + φ μ , ρ , b 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ I Γ ( β ) φ μ , ρ β Υ * ρ , b + Υ * μ , b 2 , Υ * ρ , b + Υ * μ , b 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ .
Hence,
I ρ + β Υ ~ C ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ C ρ F Υ ~ ρ Υ ~ ρ + φ μ , ρ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ F Υ ~ ρ Υ ~ μ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ .
 □
Theorem 9.
Let Υ ~ : ρ , ρ + φ μ , ρ 0  be a UD pre-invex F N V M  with ρ < μ  whose b -levels define the family of I V M s Υ b : ρ , ρ + φ μ , ρ R X o +  given by Υ b ϰ = Υ * ϰ , b , Υ * ϰ , b  for all ϰ ρ , ρ + φ μ , ρ  and for all b 0 , 1 . Let Υ ~ L ρ , ρ + φ μ , ρ , 0  and C : ρ , ρ + φ μ , ρ R ,   C ( ϰ ) 0  be symmetric with respect to 2 ρ + φ μ , ρ 2 . If φ  satisfies Assumption 1, then
Υ ~ 2 ρ + φ μ , ρ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ F I ρ + β Υ ~ C ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ C ρ .
If Υ ~ is UD pre-incave, then the inequality (60) is reversed.
Proof. 
Since Υ ~ is a ρ pre-invex F N V M , then for b 0 , 1 , we have
Υ * 2 ρ + φ μ , ρ 2 , b 1 2 Υ * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b Υ * 2 ρ + φ μ , ρ 2 , b 1 2 Υ * ρ + 1 u φ μ , ρ , b + Υ * ρ + u φ μ , ρ , b .
Since C ρ + 1 u φ μ , ρ = C ρ + u φ μ , ρ , then by multiplying (61) by u β 1 C ρ + u φ μ , ρ and integrating with respect to u over 0 , 1 , we obtain
Υ * 2 ρ + φ μ , ρ 2 , b 0 1 u β 1 C ρ + u φ μ , ρ d u 1 2 0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + u φ μ , ρ d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ d u , Υ * 2 ρ + φ μ , ρ 2 , b 0 1 C ρ + u φ μ , ρ d u 1 2 0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + u φ μ , ρ d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ d u .
Let ϰ = ρ + u φ μ , ρ . Then, we have
0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + u φ μ , ρ d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ d u = 1 φ μ , ρ β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * 2 ρ + φ μ , ρ ϰ , b C ϰ d ϰ + 1 φ μ , ρ β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * ϰ , b C ϰ d ϰ = 1 φ μ , ρ β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * ϰ , b C 2 ρ + φ μ , ρ ϰ d ϰ + 1 φ μ , ρ β ρ ρ + φ μ , ρ ϰ ρ β 1 Υ * ϰ , b C ϰ d ϰ = Γ ( β ) φ μ , ρ β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ , 0 1 u β 1 Υ * ρ + 1 u φ μ , ρ , b C ρ + u φ μ , ρ d u + 0 1 u β 1 Υ * ρ + u φ μ , ρ , b C ρ + u φ μ , ρ d u = Γ ( β ) φ μ , ρ β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ .
Then, from (63), we have
Γ β φ μ , ρ β Υ * 2 ρ + φ μ , ρ 2 , b I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ Γ β φ μ , ρ β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ , Γ β φ μ , ρ β Υ * 2 ρ + φ μ , ρ 2 , b I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ Γ ( β ) φ μ , ρ β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ ,
from which we have
Γ ( β ) φ μ , ρ β Υ * 2 ρ + φ μ , ρ 2 , b , Υ * 2 ρ + φ μ , ρ 2 , b I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ I Γ ( β ) φ μ , ρ β I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ , I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ .
That is,
Γ β φ μ , ρ β Υ ~ 2 ρ + φ μ , ρ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ F Γ ( β ) φ μ , ρ β I ρ + β Υ ~ C ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ C ρ .
This finishes the proof. □
Example 3.
Let us consider the F N V M   Υ ~ : 0 , 2 0  as
Υ ~ ϰ m = m 1 2 + ϰ ,     m 2 ϰ , 3 2 , 2 + ϰ m ϰ 1 2 ,     m 3 2 , 2 + ϰ , 0 ,       o t h e r w i s e .
Then, for each b 0 , 1 , we get Υ b ϰ = 1 b 2 ϰ + 3 2 b , 1 b 2 + ϰ + 3 2 b ) . Since the end point functions Υ * ϰ , b ,   Υ * ϰ , b are pre-invex with respect to φ μ , ρ = μ ρ for each b [ 0 , 1 ] , then Υ ~ ϰ is ρ pre-invex F N V M . If
C ϰ = ϰ ,     m 0,1 , 2 ϰ ,     m 1 , 2 ,
then C 2 ϰ = C ϰ 0 for all ϰ 0 , 2 . Since Υ * ϰ , b = 1 b 2 ϰ + 3 2 b and Υ * ϰ , b = 1 b 2 + ϰ + 3 2 b , if β = 1 2 , then we get
I ρ + β Υ ~ C ρ + φ μ , ρ I ρ + φ μ , ρ β Υ ~ C ρ F Υ ~ ρ Υ ~ ρ + φ μ , ρ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ Υ * ρ + Υ * ρ + φ μ , ρ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ = 1 b π 4 2 2 + 3 2 π b Υ * ρ + Υ * ρ + φ μ , ρ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ = 1 b π 4 + 2 2 + 3 2 π b ,
Υ * ρ + Υ * μ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ = 1 b π 4 2 2 + 3 2 π b Υ * ρ + ~ Υ * μ 2 I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ = 1 b π 4 + 2 2 + 3 2 π b ,
I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ = 1 π 1 b 2 π + 4 8 2 3 + 3 2 π b , I ρ + β Υ * C ρ + φ μ , ρ + I ρ + φ μ , ρ β Υ * C ρ = 1 π 1 b 2 π + 8 2 4 3 + 3 2 π b .
From (66)–(68), we have
1 b π 2 π + 4 8 2 3 + 3 2 π b , 1 b π 2 π + 8 2 4 3 + 3 2 π b I π 1 b 4 2 2 + 3 2 b , ( 1 b ) 4 + 2 2 + 3 2 b , = π 1 b 4 2 2 + 3 2 b , ( 1 b ) 4 + 2 2 + 3 2 b ,
for each b 0 , 1 . Therefore, we have verified Theorem 8.
For Theorem 9, it yields
Υ * 2 ρ + φ μ , ρ 2 , b I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ = 1 b π + 3 2 π b , Υ * 2 ρ + φ μ , ρ 2 , b I ρ + β C ρ + φ μ , ρ + I ρ + φ μ , ρ β C ρ = 3 1 b π + 3 2 π b .
From (68) and (69), we have
π 1 b + 3 2 b , 3 1 b + 3 2 b I [ 1 b π 2 π + 4 8 2 3 + 3 2 π b , 1 b π 2 π + 8 2 4 3 + 3 2 π b ]
for each b 0 , 1 .
Remark 4.
If C ϰ = 1 , then, from Theorems 8 and 9, we get Theorem 5.
Let β = 1 . Then, we obtain the HH–Fejér type inequality for ρ pre-invex F N V M [4]
Υ ~ 2 ρ + φ μ , ρ 2 F 1 ρ ρ + φ μ , ρ C ( ϰ ) d ϰ ( F R ) ρ ρ + φ μ , ρ Υ ~ ϰ C ( ϰ ) d ϰ F Υ ~ ρ Υ ~ μ 2
Let β = 1 and Υ ~ be a lower ρ pre-invex F N V M . Then, we obtain the HH–Fejér type inequality for lower ρ pre-invex F N V M [84]
Υ ~ 2 ρ + φ μ , ρ 2 F 1 ρ ρ + φ μ , ρ C ( ϰ ) d ϰ ( F R ) ρ ρ + φ μ , ρ Υ ~ ϰ C ( ϰ ) d ϰ F Υ ~ ρ Υ ~ μ 2
If Υ * ( ϰ , b ) = Υ * ( ϰ , b ) with φ ϰ , y = ϰ y and C ϰ = β = 1 = b , then, by means of Theorems 8 and 9, we get the classical HH inequality [97].
If Υ * ( ϰ , b ) = Υ * ( ϰ , b ) with φ ϰ , y = ϰ y and β = 1 , then, by using Theorems 8 and 9, we obtain the classical HH–Fejér inequality (2).

4. Conclusions and Future Work

In this study, the HH, HH–Fejér, and Pachpatte type integral inequalities were successfully derived using the fuzzy fractional integral operator and by employing functions that have UD fuzzy-number pre-invexity properties. A number of generalizations for the pre-invexity theory could be derived. The results appeared trustworthy and effective for dealing with various nonlinear issues that arise in science and engineering. The findings have a general nature and may constitute contributions to complex waveform theory. Further research is required to confirm such a probable connection. In the future, we will focus this concept on the field of quantum calculus.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.S.S. and J.E.M.-D.; formal analysis, S.J. and M.S.S.; investigation, M.B.K., S.J. and J.E.M.-D.; resources, M.S.S. and J.E.M.-D.; data curation, J.E.M.-D. and S.J.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K., J.E.M.-D. and M.S.S.; visualization, M.B.K.; supervision, M.B.K. and A.A.M.; project administration, M.B.K., J.E.M.-D. and A.A.M. All authors have read and agreed to the published version of the manuscript.

Funding

The researchers would like to acknowledge Deanship of Scientific Research, Taif University, Saudi Arabia for funding this work.

Data Availability Statement

No data were used to support this study.

Acknowledgments

The authors would like to thank the Rector of COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. The researchers would like to acknowledge Deanship of Scientific Research, Taif University, Saudi Arabia for funding this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte Type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
  2. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  3. Qian, W.-M.; Zhang, W.; Chu, Y.-M. Bounding the convex combination of arithmetic and integral means in terms of one parameter harmonic and geometric means. Miskolc Math. Notes 2019, 20, 1157–1166. [Google Scholar] [CrossRef]
  4. Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down -Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
  5. Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM 2020, 114, 1–14. [Google Scholar] [CrossRef]
  6. Khan, M.B.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
  7. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
  8. Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
  9. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  10. Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
  11. Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier d’une function considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  12. Hermite, C. Sur deux limites d’une integrale definie. Mathesis 1883, 3, 82. [Google Scholar]
  13. Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  14. Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  15. Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. Real Acad. A 2022, 116, 1–23. [Google Scholar] [CrossRef]
  16. Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  17. Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
  18. Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef] [Green Version]
  19. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  20. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  21. Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
  22. Chu, Y.M.; Siddiqui, M.K.; Nasir, M. On topological co-indices of polycyclic tetrathiafulvalene and polycyclic oragano silicon dendrimers. Polycycl. Aromat. Compd. 2022, 42, 2179–2197. [Google Scholar] [CrossRef]
  23. Chu, Y.M.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K.; Muhammad, M.H. Topological properties of polycyclic aromatic nanostars dendrimers. Polycycl. Aromat. Compd. 2022, 42, 1891–1908. [Google Scholar] [CrossRef]
  24. Chu, Y.M.; Numan, M.; Butt, S.I.; Siddiqui, M.K.; Ullah, R.; Cancan, M.; Ali, U. Degree-based topological aspects of polyphenylene nanostructures. Polycycl. Aromat. Compd. 2022, 42, 2591–2606. [Google Scholar] [CrossRef]
  25. Chu, Y.M.; Muhammad, M.H.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K. Topological study of polycyclic graphite carbon nitride. Polycycl. Aromat. Compd. 2022, 42, 3203–3215. [Google Scholar] [CrossRef]
  26. Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
  27. Kumar, D.; Singh, J.; Baleanu, D. On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math. Methods Appl. Sci. 2019, 43, 443–457. [Google Scholar] [CrossRef]
  28. Kumar, D.; Singh, J.; Tanwar, K.; Baleanu, D. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws. Int. J. Heat Mass Transf. 2019, 138, 1222–1227. [Google Scholar] [CrossRef]
  29. Khan, M.B.; Santos-García, G.; Budak, H.; Treanțǎ, S.; Soliman, M.S. Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (𝒑, 𝕵)-convex fuzzy-interval-valued functions. AIMS Math. 2023, 8, 7437–7470. [Google Scholar] [CrossRef]
  30. Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. [Google Scholar] [CrossRef]
  31. Khan, M.B.; Rakhmangulov, A.; Aloraini, N.; Noor, M.A.; Soliman, M.S. Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities. Mathematics 2023, 11, 656. [Google Scholar] [CrossRef]
  32. Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
  33. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
  34. Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  35. Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
  36. Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [Green Version]
  37. Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  38. Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
  39. Ibrahim, M.; Saeed, T.; Alshehri, A.M.; Chu, Y.M. Using artificial neural networks to predict the rheological behavior of non-Newtonian grapheme-ethylene glycol nanofluid. J. Therm. Anal. Calorim. 2021, 145, 1925–1934. [Google Scholar] [CrossRef]
  40. Fejér, L. Uberdie Fourierreihen, II. Math. Naturwise. Anz Ung. Akad Wiss. 1906, 24, 369–390. (In Hungarian) [Google Scholar]
  41. Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
  42. Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
  43. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier: New York, NY, USA, 2006. [Google Scholar]
  44. Bhatter, S.; Mathur, A.; Kumar, D.; Singh, J. A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory. Physics A 2020, 537, 122578. [Google Scholar] [CrossRef]
  45. Bhatter, S.; Mathur, A.; Kumar, D.; Nisar, K.S.; Singh, J. Fractional Modified Kawahara Equation with Mittag-Leffler Law. Chaos Solitons Fractals 2019, 131, 109508. [Google Scholar] [CrossRef]
  46. Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997. [Google Scholar]
  47. Singh, J.; Kilicman, A.; Kumar, D.; Swroop, R.; Fadzilah, M.A. Numerical study for fractional model of nonlinear predator prey biological population dynamical system. Therm. Sci. 2019, 23, 2017–2025. [Google Scholar] [CrossRef] [Green Version]
  48. Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Khan, M.; Chu, Y.M. The effects of L-shaped heat source in a quarter-tube enclosure filled with MHD nanofluid on heat transfer and irreversibilities, using LBM: Numerical data, optimization using neural network algorithm (ANN). J. Therm. Anal. Calorim. 2021, 144, 2435–2448. [Google Scholar] [CrossRef]
  49. Ibrahim, M.; Saleem, S.; Chu, Y.M.; Ullah, M.; Heidarshenas, B. An investigation of the exergy and first and second laws by two-phase numerical simulation of various nanopowders with different diameter on the performance of zigzag-wall micro-heat sink (ZZW-MHS). J. Therm. Anal. Calorim. 2021, 144, 1611–1621. [Google Scholar] [CrossRef]
  50. Madhukesh, J.K.; Kumar, R.N.; Gowda, R.P.; Prasannakumara, B.C.; Ramesh, G.K.; Khan, M.I.; Khan, S.U.; Chu, Y.M. Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. J. Mol. Liquids 2021, 335, 116103. [Google Scholar] [CrossRef]
  51. Li, J.; Alawee, W.H.; Rawa, M.J.; Dhahad, H.A.; Chu, Y.M.; Issakhov, A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R. Heat recovery application of nanomaterial with existence of turbulator. J. Mol. Liquids 2021, 326, 115268. [Google Scholar] [CrossRef]
  52. Chu, Y.M.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liquids 2020, 318, 114321. [Google Scholar] [CrossRef]
  53. Chu, Y.M.; Yadav, D.; Shafee, A.; Li, Z.; Bach, Q.V. Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liquids 2020, 319, 114121. [Google Scholar] [CrossRef]
  54. Chu, Y.M.; Ibrahim, M.; Saeed, T.; Berrouk, A.S.; Algehyne, E.A.; Kalbasi, R. Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling. J. Mol. Liquids 2021, 333, 115969. [Google Scholar] [CrossRef]
  55. Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
  56. Iscan, I.; Kunt, M. Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. RGMIA Res. Rep. Collect. 2015, 18, 1–19. [Google Scholar]
  57. Wang, M.-K.; He, Z.-Y.; Chu, Y.-M. Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput. Methods Funct. Theory 2020, 20, 111–124. [Google Scholar] [CrossRef]
  58. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. Real Acad. A 2021, 115, 1–13. [Google Scholar] [CrossRef]
  59. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  60. Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  61. Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  62. Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
  63. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
  64. Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Soliman, M.S. Up and Down -Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities. Axioms 2023, 12, 1. [Google Scholar] [CrossRef]
  65. Zhao, D.; Chu, Y.M.; Siddiqui, M.K.; Ali, K.; Nasir, M.; Younas, M.T.; Cancan, M. On reverse degree based topological indices of polycyclic metal organic network. Polycycl. Aromat. Compd. 2022, 42, 4386–4403. [Google Scholar] [CrossRef]
  66. Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Alsulami, H.; Chu, Y.M. Optimization and effect of wall conduction on natural convection in a cavity with constant temperature heat source: Using lattice Boltzmann method and neural network algorithm. J. Therm. Anal. Calorim. 2021, 144, 2449–2463. [Google Scholar] [CrossRef]
  67. Adil Khan, M.; Chu, Y.-M.; Khan, T.U.; Khan, J. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
  68. Khan, M.B.; Cătaş, A.; Aloraini, N.; Soliman, M.S. Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings. Fractal Fract. 2023, 7, 223. [Google Scholar] [CrossRef]
  69. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Abusorrah, A.M.; Issakhov, A.; Abu-Hamhed, N.H.; Shafee, A.; Chu, Y.M. Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liquids 2021, 330, 115591. [Google Scholar] [CrossRef]
  70. Wang, T.; Almarashi, A.; Al-Turki, Y.A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R.; Chu, Y.M. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liquids 2021, 329, 115052. [Google Scholar] [CrossRef]
  71. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Issakhov, A.; Chu, Y.M. Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liquids 2021, 334, 116096. [Google Scholar] [CrossRef]
  72. Chu, Y.M.; Abu-Hamdeh, N.H.; Ben-Beya, B.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liquids 2020, 320, 114457. [Google Scholar] [CrossRef]
  73. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. [Google Scholar] [CrossRef]
  74. Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
  75. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
  76. Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
  77. Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval valued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
  78. Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  79. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  80. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  81. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  82. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  83. Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite-Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
  84. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of pre-invex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  85. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. Higher-order strongly pre-invex fuzzy mappings and fuzzy mixed variational-like inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1856–1870. [Google Scholar] [CrossRef]
  86. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  87. Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  88. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  89. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  90. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  91. Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. Anal. Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
  92. Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Result Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
  93. Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Gemany, 1984. [Google Scholar]
  94. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, UK, 1990. [Google Scholar]
  95. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  96. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2021, 404, 178–204. [Google Scholar] [CrossRef]
  97. Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
  98. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Macías-Díaz, J.E.; Jafari, S.; Maash, A.A.; Soliman, M.S. Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation. Symmetry 2023, 15, 862. https://doi.org/10.3390/sym15040862

AMA Style

Khan MB, Macías-Díaz JE, Jafari S, Maash AA, Soliman MS. Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation. Symmetry. 2023; 15(4):862. https://doi.org/10.3390/sym15040862

Chicago/Turabian Style

Khan, Muhammad Bilal, Jorge E. Macías-Díaz, Saeid Jafari, Abdulwadoud A. Maash, and Mohamed S. Soliman. 2023. "Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation" Symmetry 15, no. 4: 862. https://doi.org/10.3390/sym15040862

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop