Parametric Symmetries in Architectures Involving Indefinite Causal Order and Path Superposition for Quantum Parameter Estimation of Pauli Channels
Abstract
:1. Introduction
2. Quantum Channel Multiparameter Estimation Problem for Pauli Channels under Composed Architectures
2.1. Pauli Channels
2.2. Cramér–Rao Bound and Quantum Fisher Information
2.3. The Real and Mathematical Bounds for
2.4. QFI Treatment for Pauli Channels inside of Communication Architectures to Improve QPE
3. Bloch Representation for the Output State under Composed Architectures Involving Pauli Channels
3.1. Output State and Bloch Vector for Some Composed Architectures Implementing QPE
3.2. A Projective Strategy on the Control State to Stochastically Reach QPE
3.3. Some Concrete Architectures to Immerse Pauli Channels for the Improvement of QPE
4. Analysis of Bounds and Stochastic Affordability Provided by Several Architectures
4.1. A Cross-Sectional Insight about QPE Using the Proposed Architectures
4.2. Analysis of QPE Using the Proposed Architectures around Typical Syndromes for Pauli Channels
General Overview of QPE on the Entire Pauli Channels Parametric Space
4.3. Some Final Considerations Related to the Success Probability
5. Discussion of Outcomes and Improving the Stochastic Affordability
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRB | Cramér–Rao Bound |
ICO | Indefinite Causal Order |
PS | Path Superposition |
PSA | Path Superposition Alternated |
QFI | Quantum Fisher Information |
QPE | Quantum Parameter Estimation |
Appendix A. Eigenvalues Finding Procedure for the QFI Matrix in the Current Approach
Appendix B. Expressions for the Success Probabilities P 0 for Each Architecture
References
- Lehmann, E.L.; Casella, G. Theory of Point Estimation; Springer: New York, NY, USA, 1986. [Google Scholar]
- Fujiwara, A. Quantum channel identification problem. Phys. Rev. A 2001, 63, 042304. [Google Scholar] [CrossRef]
- Fisher, R.A. On the Mathematical Foundations of Theoretical Statistics. Philos. Trans. R. Soc. Lond. Ser. A 1922, 222, 594–604. [Google Scholar]
- Helstrom, C. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Rao, C.R. Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Frieden, B.R.; Gatenby, R.A. Principle of maximum Fisher information from Hardy’s axioms applied to statistical systems. Phys. Rev. E 2013, 88, 042144. [Google Scholar] [CrossRef] [PubMed]
- Chiribella, G.; D’Ariano, G.M.; Perinotti, P. Quantum circuit architecture. Phys. Rev. Lett. 2008, 101, 060401. [Google Scholar] [CrossRef]
- Ebler, D.; Salek, S.; Chiribella, G. Enhanced Communication with the Assistance of Indefinite Causal Order. Phys. Rev. Lett. 2017, 120, 120502. [Google Scholar] [CrossRef] [PubMed]
- Delgado, F. Symmetries of Quantum Fisher Information as Parameter Estimator for Pauli Channels under Indefinite Causal Order. Symmetry 2022, 14, 1813. [Google Scholar] [CrossRef]
- Frey, M.; Collins, D. Quantum Fisher information and the qudit depolarization channel. Proc. SPIE Quantum Inf. Comput. VII 2009, 7342, 73420N. [Google Scholar]
- Procopio, L.M.; Delgado, F.; Enríquez, M.; Belabas, N.; Levenson, J.A. Sending classical information via three noisy channels in superposition of causal orders. Phys. Rev. A 2020, 101, 012346. [Google Scholar] [CrossRef]
- Yang, Y.; Ru, S.; An, M.; Wang, Y.; Wang, F.; Zhang, P.; Li, F. Multiparameter simultaneous optimal estimation with an SU(2) coding unitary evolution. Phys. Rev. A 2022, 105, 022406. [Google Scholar] [CrossRef]
- Frey, M.; Coffey, L.; Mentch, L.; Miller, A.; Rubin, S. Correlation Identification In Bipartite Pauli Channels. Int. J. Quantum Inf. 2010, 8, 979–990. [Google Scholar] [CrossRef]
- Abd-Rabbou, M.Y.; Metwally, N.; Obada, A.A.; Ahmed, M. Restraining the decoherence of accelerated qubit–qutrit system via local Markovian channels. Phys. Scr. 2019, 94, 105103. [Google Scholar] [CrossRef]
- Abd-Rabbou, M.Y.; Khan, S.; Shamirzaie, M. Quantum fisher information and quantum coherence of an entangled bipartite state interacting with a common classical environment in accelerating frames. Quantum Inf. Proc. 2022, 21, 218. [Google Scholar] [CrossRef]
- Abd-Rabbou, M.; Ali, S.; Metwally, N. Detraction of decoherence that arises from the acceleration process. J. Opt. Soc. Am. B 2023, 40, 585–593. [Google Scholar] [CrossRef]
- Eisert, J.; Hangleiter, D.; Walk, N.; Roth, I.; Markham, D.; Parekh, R.; Chabaud, U.; Kashefi, E. Quantum certification and benchmarking. Nat. Rev. Phys. 2020, 2, 382. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, S.; Seif, A.; Jiang, L. Quantum advantages for Pauli channel estimation. Phys. Rev. A 2022, 105, 032435. [Google Scholar] [CrossRef]
- Flammia, S.T.; Wallman, J.J. Efficient estimation of Pauli channels. arXiv 2019, arXiv:1907.12976. [Google Scholar]
- Fujiwara, A.; Imai, H. Quantum parameter estimation of a generalized Pauli channel. J. Phys. A Math. Gen. 2003, 36, 8093. [Google Scholar] [CrossRef]
- Katarzyna, S. Geometry of Pauli maps and Pauli channels. Phys. Rev. A 2019, 100, 062331. [Google Scholar]
- Kraus, K. States, Effects and Operations: Fundamental Notions of Quantum Theory; Springer: Berlin, Germany, 1983. [Google Scholar]
- Delgado, F.; Cardoso-Isidoro, C. Performance characterization of Pauli channels assisted by indefinite causal order and post-measurement. Quantum Inf. Comput. 2020, 20, 1261–1280. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, H.; Lu, X.; Wang, X. Quantum Fisher information matrix and multiparameter estimation. J. Phys. A Math. Theor. 2020, 53, 023001. [Google Scholar] [CrossRef]
- Šafránek, D. Simple expression for the quantum Fisher information matrix. Phys. Rev. A 2018, 97, 042322. [Google Scholar] [CrossRef]
- Abbott, A.; Wechs, J.; Horsman, D.; Mhalla, M.; Branciard, C. Communication through coherent control of quantum channels. Quantum 2020, 4, 333. [Google Scholar] [CrossRef]
- Procopio, L. Parameter estimation via indefinite causal structures. J. Phys. Conf. Ser. 2023, 2448, 012007. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Yuan, H.; Yang, Y. Strict Hierarchy of Strategies for Non-asymptotic Quantum Metrology. arXiv 2023, arXiv:2203.09758. [Google Scholar]
- Hou, Z.; Wang, R.J.; Tang, J.F.; Yuan, H.; Xiang, G.Y.; Li, C.F.; Guo, G.C. Control-Enhanced Sequential Scheme for General Quantum Parameter Estimation at the Heisenberg Limit. Phys. Rev. Lett. 2019, 123, 040501. [Google Scholar] [CrossRef]
- Bavaresco, J.; Murao, M.; Quintino, M.T. Strict Hierarchy between Parallel, Sequential, and Indefinite-Causal-Order Strategies for Channel Discrimination. Phys. Rev. Lett. 2021, 127, 200504. [Google Scholar] [CrossRef]
- Kurdzialek, S.; Gorecki, W.; Albarelli, F.; Demkowicz-Dobrzanski, R. Using adaptiveness and causal superpositions against noise in quantum metrology. arXiv 2022, arXiv:2212.08106. [Google Scholar]
- Šafránek, D. Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 2017, 95, 052320. [Google Scholar] [CrossRef]
- Seveso, L.; Albarelli, F.; Genoni, M.G.; Paris, M.G.A. On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank. J. Phys. Math. Theor. 2019, 53, 02LT01. [Google Scholar] [CrossRef]
- Len, Y.L. Multiparameter estimation for qubit states with collective measurements: A case study. New J. Phys. 2022, 24, 033037. [Google Scholar] [CrossRef]
- Szczykulska, M.; Baumgratz, T.; Datta, A. Reaching for the quantum limits in the simultaneous estimation of phase and phase diffusion. Quantum Sci. Technol. 2017, 2, 044004. [Google Scholar] [CrossRef]
- Khraishi, T.; Shen, Y.L. Introductory Continuum Mechanics with Applications to Elasticity, revised ed.; Cognella Academic Publishing: San Diego, CA, USA, 2013. [Google Scholar]
- Bakar, A.; Khraishi, T. Eigenvalues and Eigenvectors for 3 × 3 Symmetric Matrices: An Analytical Approach. J. Adv. Math. Comput. Sci. 2020, 35, 106–118. [Google Scholar]
Central Line | ||||
---|---|---|---|---|
0.001 | 0.377 | 0.034 | 0.034 | 0.377 |
0.034 | 0.260 | 0.357 | 0.357 | 0.236 |
0.067 | 0.846 | 0.000 | 0.001 | 0.052 |
0.100 | 1.195 | 1.908 | 0.001 | 0.891 |
0.133 | 1.938 | 1.687 | 1.603 | 1.175 |
0.166 | 3.742 | 1.636 | 1.589 | 1.618 |
0.199 | 10.140 | 1.554 | 1.624 | 2.142 |
0.232 | 81.385 | 1.498 | 1.498 | 2.855 |
0.265 | 117.189 | 1.564 | 1.564 | 3.186 |
0.298 | 11.446 | 1.498 | 1.498 | 2.239 |
0.331 | 4.024 | 1.294 | 1.294 | 1.018 |
Syndrome | 0.245865 | 0.037687 | 0.000023 | 0.243448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, F. Parametric Symmetries in Architectures Involving Indefinite Causal Order and Path Superposition for Quantum Parameter Estimation of Pauli Channels. Symmetry 2023, 15, 1097. https://doi.org/10.3390/sym15051097
Delgado F. Parametric Symmetries in Architectures Involving Indefinite Causal Order and Path Superposition for Quantum Parameter Estimation of Pauli Channels. Symmetry. 2023; 15(5):1097. https://doi.org/10.3390/sym15051097
Chicago/Turabian StyleDelgado, Francisco. 2023. "Parametric Symmetries in Architectures Involving Indefinite Causal Order and Path Superposition for Quantum Parameter Estimation of Pauli Channels" Symmetry 15, no. 5: 1097. https://doi.org/10.3390/sym15051097
APA StyleDelgado, F. (2023). Parametric Symmetries in Architectures Involving Indefinite Causal Order and Path Superposition for Quantum Parameter Estimation of Pauli Channels. Symmetry, 15(5), 1097. https://doi.org/10.3390/sym15051097