Lorentz Violation in Finsler Geometry
Abstract
:1. Introduction
2. Introduction to Finsler Geometry
2.1. A First Glance at Finsler Geometry
- Regularity: is on the entire slit tangent bundle .
- Positive homogeneity: for all .
- Strong convexity: The Hessian matrix
2.2. Mathematical Concepts of Finsler Geometry
3. Modified Dispersion Relations and Finsler Geometry
3.1. The Bridge between Modified Dispersion Relations and Finsler Geometry
3.2. Physical Influences from Finsler Geometry
3.2.1. Time Dilation in Finsler Geometry
3.2.2. Arrival Time Delay of Astroparticles in Finsler Geometry
3.2.3. Transformation between Inertial Frames and Modified Composition Laws
4. Connections between Lorentz Violation Theories and Finsler Geometry
4.1. Doubly Special Relativity and Finsler Geometry
4.2. Standard-Model Extension and Finsler Geometry
4.3. Very Special Relativity and Finsler Geometry
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSR | Doubly special relativity |
FRW | Friedmann–Lemaître–Robertson–Walker |
GZK | Greisen–Zatsepin–Kuzmin |
LV | Lorentz violation |
MDR | Modified dispersion relation |
QG | Quantum gravity |
SME | Standard-Model Extension |
VSR | Very special relativity |
References
- Amelino-Camelia, G. Introduction to Quantum-Gravity Phenomenology. Lect. Notes Phys. 2005, 669, 59. [Google Scholar]
- Danielsson, U. Introduction to string theory. Rep. Prog. Phys. 2001, 64, 51. [Google Scholar] [CrossRef]
- Li, C.; Ma, B.-Q. Light speed variation in a string theory model for space-time foam. Phys. Lett. B 2021, 819, 136443. [Google Scholar] [CrossRef]
- Li, C.; Ma, B.-Q. Lorentz- and CPT-violating neutrinos from string/D-brane model. Phys. Lett. B 2022, 835, 137543. [Google Scholar] [CrossRef]
- Li, C.; Ma, B.-Q. Lorentz and CPT breaking in gamma-ray burst neutrinos from string theory. J. High Energy Phys. 2023, 3, 230. [Google Scholar] [CrossRef]
- Rovelli, C. Loop quantum gravity. Living Rev. Relativ. 2008, 11, 5. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bianchi, E. A short review of loop quantum gravity. Rep. Prog. Phys. 2021, 84, 042001. [Google Scholar] [CrossRef]
- Li, H.; Ma, B.-Q. Speed variations of cosmic photons and neutrinos from loop quantum gravity. Phys. Lett. B 2013, 836, 137613. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Testable scenario for relativity with minimum length. Phys. Lett. B 2001, 510, 255–263. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 2002, 11, 35. [Google Scholar] [CrossRef]
- Magueijo, J.; Smolin, L. Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 2002, 88, 190403. [Google Scholar] [CrossRef]
- Magueijo, J.; Smolin, L. Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 2003, 67, 044017. [Google Scholar] [CrossRef]
- Cohen, A.G.; Glashow, S.L. Very Special Relativity. Phys. Rev. Lett. 2006, 97, 021601. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef]
- He, P.; Ma, B.-Q. Lorentz Symmetry Violation of Cosmic Photons. Universe 2022, 8, 323. [Google Scholar] [CrossRef]
- Chang, Z.; Li, X. Lorentz invariance violation and symmetry in Randers-Finsler spaces. Phys. Lett. B 2008, 663, 103–106. [Google Scholar] [CrossRef]
- Chang, Z.; Li, X. Ultra-high energy cosmic rays threshold in Randers-Finsler space. Chin. Phys. C 2009, 33, 626–628. [Google Scholar]
- Li, X.; Chang, Z. Towards a gravitation theory in Berwald–Finsler space. Chin. Phys. C 2010, 34, 28. [Google Scholar]
- Pfeifer, C.; Wohlfarth, M.N.R. Finsler geometric extension of Einstein gravity. Phys. Rev. D 2012, 85, 064009. [Google Scholar] [CrossRef]
- Li, X.; Chang, Z. Spacetime structure of MOND with Tully-Fisher relation and Lorentz invariance violation. Chin. Phys. C 2013, 37, 123103. [Google Scholar] [CrossRef]
- Chang, Z.; Li, X. Modified Newton’s gravity in Finsler space as a possible alternative to dark matter hypothesis. Phys. Lett. B 2008, 668, 453–456. [Google Scholar] [CrossRef]
- Basilakos, S.; Kouretsis, A.P.; Saridakis, E.N.; Stavrinos, P.C. Resembling dark energy and modified gravity with Finsler-Randers cosmology. Phys. Rev. D 2013, 88, 123510. [Google Scholar] [CrossRef]
- Chang, Z.; Li, X. Modified Friedmann model in Randers–Finsler space of approximate Berwald type as a possible alternative to dark energy hypothesis. Phys. Lett. B 2009, 676, 173–176. [Google Scholar] [CrossRef]
- Minas, G.; Saridakis, E.N.; Stavrinos, P.C.; Triantafyllopoulos, A. Bounce Cosmology in Generalized Modified Gravities. Universe 2019, 5, 74. [Google Scholar] [CrossRef]
- Chang, Z.; Li, X.; Lin, H.-N.; Wang, S. Constraining anisotropy of the universe from different groups of type-Ia supernovae. Eur. Phys. J. C 2014, 74, 2821. [Google Scholar] [CrossRef]
- Chang, Z.; Li, X.; Lin, H.-N.; Wang, S. Constraining the anisotropy of the universe from supernovae and gamma-ray bursts. Mod. Phys. Lett. A 2014, 29, 1450067. [Google Scholar] [CrossRef]
- Ikeda, S.; Saridakis, E.N.; Stavrinos, P.C.; Triantafyllopoulos, A. Cosmology of Lorentz fiber-bundle induced scalar-tensor theories. Phys. Rev. D 2019, 100, 124035. [Google Scholar] [CrossRef]
- Konitopoulos, S.; Saridakis, E.N.; Stavrinos, P.C.; Triantafyllopoulos, A. Dark gravitational sectors on a generalized scalar-tensor vector bundle model and cosmological applications. Phys. Rev. D 2021, 104, 064018. [Google Scholar] [CrossRef]
- Li, X.; Chang, Z. Gravitational Wave in Lorentz Violating Gravity. Commun. Theor. Phys. 2013, 60, 535–540. [Google Scholar] [CrossRef]
- Antonelli, V.; Miramonti, L.; Torri, M.D.C. Neutrino oscillations and Lorentz invariance violation in a Finslerian geometrical model. Eur. Phys. J. C 2018, 78, 667. [Google Scholar] [CrossRef]
- Bao, D.; Chern, S.S.; Shen, Z. An Introduction to Riemann–Finsler Geometry (Graduate Texts in Mathematics, 200); Springer: New York, NY, USA, 2000. [Google Scholar]
- Kimberly, D.; Magueijo, J.; Medeiros, J. Nonlinear relativity in position space. Phys. Rev. D 2004, 70, 084007. [Google Scholar] [CrossRef]
- Magueijo, J.; Smolin, L. Gravity’s rainbow. Class. Quantum Gravity 2004, 21, 1725. [Google Scholar] [CrossRef]
- Ellis, J.R.; Mavromatos, N.E.; Nanopoulos, D.V. Derivation of a vacuum refractive index in a stringy space–time foam model. Phys. Lett. B 2008, 31, 412–417. [Google Scholar] [CrossRef]
- Girelli, F.; Liberati, S.; Percacci, R.; Rahmede, C. Modified dispersion relations from the renormalization group of gravity. Class. Quantum Gravity 2007, 24, 3995. [Google Scholar] [CrossRef]
- Aloisio, R.; Galante, A.; Grillo, A.; Liberati, S.; Luzio, E.; Méndez, F. Deformed special relativity as an effective theory of measurements on quantum gravitational backgrounds. Phys. Rev. D 2006, 73, 045020. [Google Scholar] [CrossRef]
- Girelli, F.; Liberati, S.; Sindoni, L. Planck-scale modified dispersion relations and Finsler geometry. Phys. Rev. D 2007, 75, 064015. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Barcaroli, L.; Gubitosi, G. Realization of doubly special relativistic symmetries in Finsler geometries. Phys. Rev. D 2014, 90, 125030. [Google Scholar] [CrossRef]
- Lobo, I.P.; Loret, N.; Nettel, F. Investigation of Finsler geometry as a generalization to curved spacetime of Planck-scale-deformed relativity in the de Sitter case. Phys. Rev. D 2017, 95, 046015. [Google Scholar] [CrossRef]
- Lobo, I.P.; Loret, N.; Nettel, F. Rainbows without unicorns: Metric structures in theories with modified dispersion relations. Eur. Phys. J. C 2017, 77, 451. [Google Scholar] [CrossRef]
- Lobo, I.P.; Pfeifer, C. Reaching the Planck scale with muon lifetime measurements. Phys. Rev. D 2021, 103, 106025. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, B.-Q. Lorentz-violation-induced arrival time delay of astroparticles in Finsler spacetime. Phys. Rev. D 2022, 105, 124069. [Google Scholar] [CrossRef]
- Lobo, I.P.; Pfeifer, C.; Morais, P.H.; Batista, R.A.; Bezerra, V.B. Finite Planck-scale-modified relativistic framework in Finsler geometry. In Proceedings of the Corfu Summer Institute 2021 “School and Workshops on Elementary Particle Physics and Gravity”, Corfu, Greece, 29 August–9 October 2021; p. 334. [Google Scholar]
- Ellis, J.R.; Mavromatos, N.E.; Nanopoulos, D.V.; Sakharov, A.S. Quantum-gravity analysis of gamma-ray bursts using wavelets. Astron. Astrophys. 2003, 402, 409–424. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Proposal of a second generation of quantum-gravity-motivated Lorentz-symmetry tests: Sensitivity to effects suppressed quadratically by the Planck scale. Int. J. Mod. Phys. D 2003, 12, 1633–1640. [Google Scholar] [CrossRef]
- Ellis, J.R.; Mavromatos, N.E.; Nanopoulos, D.V.; Sakharov, A.S.; Sarkisyan, E.K.G. Robust limits on Lorentz violation from gamma-ray bursts. Astropart. Phys. 2006, 25, 402–411, Erratum in Astropart. Phys. 2008, 29, 158–159. [Google Scholar] [CrossRef]
- Jacob, U.; Piran, T. Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nat. Phys. 2007, 3, 87–90. [Google Scholar] [CrossRef]
- Biesiada, M.; Piórkowska, A. Lorentz invariance violation-induced time delays in GRBs in different cosmological models. Class. Quantum Gravity 2009, 26, 125007. [Google Scholar] [CrossRef]
- Shao, L.; Xiao, Z.; Ma, B.-Q. Lorentz violation from cosmological objects with very high energy photon emissions. Astropart. Phys. 2010, 33, 312–315. [Google Scholar] [CrossRef]
- Shao, L.; Ma, B.-Q. Lorentz violation effects on astrophysical propagation of very high energy photons. Mod. Phys. Lett. A 2010, 25, 3251–3266. [Google Scholar] [CrossRef]
- Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Couturier, C.; Granot, J.; Stecker, F.W.; Cohen-Tanugi, J.; Longo, F. Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Phys. Rev. D 2013, 87, 122001. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, B.-Q. Lorentz violation from gamma-ray bursts. Astropart. Phys. 2015, 61, 108–112. [Google Scholar] [CrossRef]
- Pan, Y.; Gong, Y.; Cao, S.; Gao, H.; Zhu, Z.-H. Constraints on the Lorentz invariance violation with gamma-ray bursts via a Markov Chain Monte Carlo approach. Astrophys. J. 2015, 808, 78. [Google Scholar] [CrossRef]
- Xu, H.; Ma, B.-Q. Light speed variation from gamma-ray bursts. Astropart. Phys. 2016, 82, 72–76. [Google Scholar] [CrossRef]
- Xu, H.; Ma, B.-Q. Light speed variation from gamma ray burst GRB 160509A. Phys. Lett. B 2016, 760, 602–604. [Google Scholar] [CrossRef]
- Zou, X.-B.; Deng, H.-K.; Yin, Z.-Y.; Wei, H. Model-independent constraints on Lorentz invariance violation via the cosmographic approach. Phys. Lett. B 2018, 776, 284–294. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, B.-Q. Light speed variation from gamma ray bursts: Criteria for low energy photons. Eur. Phys. J. C 2018, 78, 825. [Google Scholar] [CrossRef]
- Xu, H.; Ma, B.-Q. Regularity of high energy photon events from gamma ray bursts. J. Cosmol. Astropart. Phys. 2018, 01, 050. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, B.-Q. Lorentz violation from gamma-ray burst neutrinos. Commun. Phys. 2018, 1, 62. [Google Scholar] [CrossRef]
- Huang, Y.; Li, H.; Ma, B.-Q. Consistent Lorentz violation features from near-TeV IceCube neutrinos. Phys. Rev. D 2019, 99, 123018. [Google Scholar] [CrossRef]
- Li, H.; Ma, B.-Q. Light speed variation from active galactic nuclei. Sci. Bull. 2020, 65, 262–266. [Google Scholar] [CrossRef]
- Pan, Y.; Qi, J.; Cao, S.; Liu, T.; Liu, Y.; Geng, S.; Lian, Y.; Zhu, Z.-H. Model-independent constraints on Lorentz invariance violation: Implication from updated gamma-ray burst observations. Astrophys. J. 2020, 890, 169. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Bounds on Lorentz invariance violation from MAGIC observation of GRB 190114C. Phys. Rev. Lett. 2020, 125, 021301. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, B.-Q. Novel pre-burst stage of gamma-ray bursts from machine learning. J. High Energy Astrophys. 2021, 32, 78–86. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, B.-Q. Pre-burst events of gamma-ray bursts with light speed variation. Phys. Lett. B 2021, 820, 136518. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, B.-Q. Pre-burst neutrinos of gamma-ray bursters accompanied by high-energy photons. Phys. Lett. B 2021, 820, 136546. [Google Scholar] [CrossRef]
- Jacob, U.; Piran, T. Lorentz-violation-induced arrival delays of cosmological particles. J. Cosmol. Astropart. Phys. 2008, 01, 031. [Google Scholar] [CrossRef]
- Pfeifer, C. Redshift and lateshift from homogeneous and isotropic modified dispersion relations. Phys. Lett. B 2018, 780, 246–250. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, B.-Q. Trajectories of astroparticles in pseudo-Finsler spacetime with the most general modified dispersion. Eur. Phys. J. C, 2023; 83, in press. [Google Scholar]
- Judes, S. Conservation laws in “doubly special relativity”. Phys. Rev. D 2003, 68, 045001. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A. Doubly spacial relativity versus κ-deformation of relativistic kinematics. Int. J. Mod. Phys. A 2003, 18, 7–18. [Google Scholar] [CrossRef]
- Gubitosi, G.; Mercati, F. Relative Locality in κ-Poincaré. Class. Quantum Gravity 2013, 30, 145002. [Google Scholar] [CrossRef]
- Lukierski, J.; Ruegg, H.; Nowickl, A.; Tolstoy, V.N. Q deformation of Poincare algebra. Phys. Lett. B 1991, 264, 331–338. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A.; Ruegg, H. Real forms of complex quantum anti-De Sitter algebra Uq(Sp(4,C)) and their contraction schemes. Phys. Lett. B 1991, 271, 321. [Google Scholar] [CrossRef]
- Majid, S.; Ruegg, H. Bicrossproduct structure of kappa Poincare group and noncommutative geometry. Phys. Lett. B 1994, 334, 348. [Google Scholar] [CrossRef]
- Lukierski, J.; Ruegg, H.; Zakrzewski, W.J. Classical quantum mechanics of free kappa relativistic systems. Annals Phys. 1995, 243, 90. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J. Observer independent quantum of mass. Phys. Lett. A 2001, 286, 391. [Google Scholar] [CrossRef]
- Bruno, N.R.; Amelino-Camelia, G.; Kowalski-Glikman, J. Deformed boost transformations that saturate at the Planck scale. Phys. Lett. B 2001, 522, 133. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J.; Nowak, S. Doubly special relativity theories as different bases of κ-Poincaré algebra. Phys. Lett. B 2002, 539, 126–132. [Google Scholar] [CrossRef]
- Mignemi, S. Doubly special relativity and Finsler geometry. Phys. Rev. D 2007, 76, 047702. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Riemann–Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 2011, 701, 137–143. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N.; Tso, R. Bipartite Riemann–Finsler geometry and Lorentz violation. Phys. Lett. B 2012, 716, 470–474. [Google Scholar] [CrossRef]
- Colladay, D.; McDonald, P. Singular Lorentz-violating Lagrangians and associated Finsler structures. Phys. Rev. D 2015, 92, 085031. [Google Scholar] [CrossRef]
- Russell, N. Finsler-like structures from Lorentz-breaking classical particles. Phys. Rev. D 2015, 91, 045008. [Google Scholar] [CrossRef]
- Colladay, M. Classical Lagrangians and Finsler structures for the nonminimal fermion sector of the standard model extension. Phys. Rev. D 2016, 93, 105017. [Google Scholar]
- Edwards, B.R.; Kostelecký, V.A. Riemann–Finsler geometry and Lorentz-violating scalar fields. Phys. Lett. B 2018, 786, 319–326. [Google Scholar] [CrossRef]
- Schreck, M. Classical Lagrangians for the nonminimal Standard-Model Extension at higher orders in Lorentz violation. Phys. Lett. B 2019, 793, 70–77. [Google Scholar] [CrossRef]
- Reis, J.A.A.S.; Schreck, M. Classical Lagrangians for the nonminimal spin-nondegenerate Standard-Model extension at higher orders in Lorentz violation. Phys. Rev. D 2021, 103, 095029. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Lehnert, R. Stability, causality, and Lorentz and CPT violation. Phys. Rev. D 2001, 63, 065008. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N. Classical kinematics for Lorentz violation. Phys. Lett. B 2010, 693, 443. [Google Scholar] [CrossRef]
- Silva, J.E.G.; Almeida, C.A.S. Kinematics and dynamics in a bipartite-Finsler spacetime. Phys. Lett. B 2014, 731, 74–79. [Google Scholar] [CrossRef]
- Colladay, D. Extended hamiltonian formalism and Lorentz-violating lagrangians. Phys. Lett. B 2017, 772, 694–698. [Google Scholar] [CrossRef]
- Silva, J.E.G.; Maluf, R.V.; Almeida, C.A.S. Bipartite-Finsler symmetries. Phys. Lett. B 2019, 798, 135009. [Google Scholar] [CrossRef]
- Bogoslovsky, G.Y. A special-relativistic theory of the locally anisotropic space-time. Nuov. Cim. B 1977, 40, 99–115. [Google Scholar] [CrossRef]
- Bogoslovsky, G.Y.; Goenner, H.F. On a possibility of phase transitions in the geometric structure of space-time. Phys. Lett. A 1998, 244, 222–228. [Google Scholar] [CrossRef]
- Bogoslovsky, G.Y.; Goenner, H.F. Finslerian spaces possessing local relativistic symmetry. Gen. Relativ. Gravit. 1999, 31, 1565. [Google Scholar] [CrossRef]
- Goenner, H.F.; Bogoslovsky, G.Y. A class of anisotropic (Finsler) space-time geometries. Gen. Relativ. Gravit. 1999, 31, 1383. [Google Scholar] [CrossRef]
- Ahluwalia, D.; Horvath, S. Very special relativity as relativity of dark matter: The Elko connection. J. High Energy Phys. 2010, 1011, 078. [Google Scholar] [CrossRef]
- Kogut, J.B.; Soper, D.E. Quantum Electrodynamics in the Infinite-Momentum Frame. Phys. Rev. D 1970, 1, 2901. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Gomis, J.; Pope, C.N. General very special relativity is Finsler geometry. Phys. Rev. D 2007, 76, 081701. [Google Scholar] [CrossRef]
- Levy-Nahas, M. Deformation and Contraction of Lie Algebras. J. Math. Phys. 1967, 8, 1211. [Google Scholar] [CrossRef]
- Cohen, A.G.; Glashow, S.L. A Lorentz-Violating Origin of Neutrino Mass? arXiv 2006, arXiv:hep-ph/0605036. [Google Scholar]
- Cheon, S.; Lee, C.; Lee, S.J. SIM(2)-invariant modifications of electrodynamic theory. Phys. Lett. B 2009, 679, 73. [Google Scholar] [CrossRef]
- Alfaro, J. Non-Abelian fields in very special relativity. Phys. Rev. D 2013, 88, 085023. [Google Scholar] [CrossRef]
- Alfaro, J.; Rivelles, V.O. Very special relativity and Lorentz violating theories. Phys. Lett. B 2014, 734, 239–244. [Google Scholar] [CrossRef]
- Alfaro, J.; González, P.; Avila, R. Electroweak standard model with very special relativity. Phys. Rev. D 2015, 91, 105007. [Google Scholar] [CrossRef]
- Alfaro, J. A Sim(2) invariant dimensional regularization. Phys. Lett. B 2017, 772, 100–104. [Google Scholar] [CrossRef]
- Alfaro, J. Loop Corrections in Very Special Relativity Standard Model. J. Phys. Conf. Ser. 2018, 952, 012009. [Google Scholar] [CrossRef]
- Alfaro, J. Feynman Rules, Ward Identities and Loop Corrections in Very Special Relativity Standard Model. Universe 2019, 5, 16. [Google Scholar] [CrossRef]
- Alfaro, J.; Soto, A. Photon mass in very special relativity. Phys. Rev. D 2019, 100, 055029. [Google Scholar] [CrossRef]
- Alfaro, J.; Soto, A. Schwinger model à la Very Special Relativity. Phys. Lett. B 2019, 797, 134923. [Google Scholar] [CrossRef]
- Alfaro, J. Axial anomaly in very special relativity. Phys. Rev. D 2021, 103, 075011. [Google Scholar] [CrossRef]
- Alfaro, J.; Santoni, A. Very special linear gravity: A gauge-invariant graviton mass. Phys. Lett. B 2022, 829, 137080. [Google Scholar] [CrossRef]
- Haghgouyan, Z.; Ghasemkhani, M.; Bufalo, R.; Soto, A. Induced non-Abelian Chern–Simons effective action in very special relativity. Eur. Phys. J. Plus 2022, 137, 732. [Google Scholar] [CrossRef]
- Bufalo, R.; Ghasemkhani, M. Path integral analysis of the axial anomaly in Very Special Relativity. Mod. Phys. Lett. A 2022, 37, 2250002. [Google Scholar] [CrossRef]
- Lee, C. Quantum field theory with a preferred direction: The very special relativity framework. Phys. Lett. B 2016, 93, 045011. [Google Scholar] [CrossRef]
- Ilderton, A. Very Special Relativity as a background field theory. Phys. Rev. D 2016, 94, 045019. [Google Scholar] [CrossRef]
- Bogoslovsky, G.Y.; Goenner, H.F. Concerning the generalized Lorentz symmetry and the generalization of the Dirac equation. Phys. Lett. A 2004, 323, 40. [Google Scholar] [CrossRef]
- Alvarez, E.; Vidal, R. Very special (de Sitter) relativity. Phys. Rev. D 2008, 77, 127702. [Google Scholar] [CrossRef]
- Mück, W. Very special relativity in curved space–times. Phys. Lett. B 2008, 670, 95–98. [Google Scholar] [CrossRef]
- Kouretsis, A.P.; Stathakopoulos, M.; Stavrinos, P.C. General very special relativity in Finsler cosmology. Phys. Rev. D 2009, 79, 104011. [Google Scholar] [CrossRef]
- Fuster, A.; Pabst, C.; Pfeifer, C. Berwald spacetimes and very special relativity. Phys. Rev. D 2018, 98, 084062. [Google Scholar] [CrossRef]
Designation | Generators | Algebra |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Ma, B.-Q. Lorentz Violation in Finsler Geometry. Symmetry 2023, 15, 978. https://doi.org/10.3390/sym15050978
Zhu J, Ma B-Q. Lorentz Violation in Finsler Geometry. Symmetry. 2023; 15(5):978. https://doi.org/10.3390/sym15050978
Chicago/Turabian StyleZhu, Jie, and Bo-Qiang Ma. 2023. "Lorentz Violation in Finsler Geometry" Symmetry 15, no. 5: 978. https://doi.org/10.3390/sym15050978
APA StyleZhu, J., & Ma, B.-Q. (2023). Lorentz Violation in Finsler Geometry. Symmetry, 15(5), 978. https://doi.org/10.3390/sym15050978