Water Pumping and Refilling (WPR): A Resource Allocation Algorithm for Maximizing Acceptance Ratio in Asymmetrical Edge Computing Networks
Abstract
:1. Introduction
- A low-complexity water pumping and refilling (WPR) algorithm is proposed to release the untapped potential of the network and accommodate more requests, based on the delay cost minimization scheme. This approach can serve as both a supplementary method and a standalone method when combined with a specific customization strategy.
- The joint computation offloading and edge resource allocation problem is formulated as a mixed integer nonlinear programming problem with the objective of maximizing the number of accepted requests. Resource margins between the delay cost minimization scheme and the desirable quality of service (QoS) scheme are exploited to accommodate more requests.
- We evaluate the performance of the proposed algorithm under various conditions. The simulation results demonstrate that our WPR algorithm outperforms the delay-cost-minimum-based schemes regarding acceptance ratio.
2. Related Work
3. System Model
3.1. Transmission Model
3.2. Computing Model
3.3. Problem Formulation
4. The Water-Pumping Algorithm
4.1. The Delay Minimum Solution
4.2. Water Pumping
4.3. Water Refilling
4.4. Complexity Analysis
Algorithm 1: Water Pumping and Refilling |
Input: initial accepted requests set , initial of , pumping policy and refilling policy ; Output: final accepted requests set , final of ;
|
5. Simulation Results and Discussion
5.1. Simulation Setting
- Delay cost minimization (DCM): this scheme allocates resources for accepted requests with the aim of minimizing system delay costs. In cases where a request is rejected, the DCM scheme imposes a penalty instead of the processing delay.
- Water pumping and refilling, basing on DCM (WPDCM): this scheme uses results obtained from DCM as the input of WPR and sets each item of to 1.
- Water pumping and refilling (WPR): The initial only includes the request with the smallest which is the refilling policy used by default.
- Smallest input file first water pumping and refilling (SFWPR): using the default policy while refilling requests with the smallest input size. The initial only includes the request with the smallest input size.
5.2. Result Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint computation offloading and user association in multi-task mobile edge computing. IEEE Trans. Veh. Technol. 2018, 67, 12313–12325. [Google Scholar] [CrossRef]
- Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards 5G. ETSI White Pap. 2015, 11, 1–16. [Google Scholar]
- Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [Google Scholar] [CrossRef]
- Khan, A.A.; Laghari, A.A.; Shaikh, Z.A.; Dacko-Pikiewicz, Z.; Kot, S. Internet of Things (IoT) security with blockchain technology: A state-of-the-art review. IEEE Access 2022, 10, 122679–122695. [Google Scholar] [CrossRef]
- Wang, Y.; Sheng, M.; Wang, X.; Wang, L.; Li, J. Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 2016, 64, 4268–4282. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Ning, Z.; Ngai, E.C.H.; Zhou, L.; Wei, J.; Cheng, J.; Hu, B. Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet Things J. 2017, 5, 2633–2645. [Google Scholar] [CrossRef]
- Ren, J.; Yu, G.; He, Y.; Li, G.Y. Collaborative cloud and edge computing for latency minimization. IEEE Trans. Veh. Technol. 2019, 68, 5031–5044. [Google Scholar] [CrossRef]
- Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [Google Scholar] [CrossRef]
- Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A survey on the computation offloading approaches in mobile edge/cloud computing environment: A stochastic-based perspective. J. Grid Comput. 2020, 18, 639–671. [Google Scholar] [CrossRef]
- Yuan, H.; Bi, J.; Zhou, M. Geography-aware task scheduling for profit maximization in distributed green data centers. IEEE Trans. Cloud Comput. 2020, 10, 1864–1874. [Google Scholar] [CrossRef]
- Yuan, H.; Zhou, M. Profit-maximized collaborative computation offloading and resource allocation in distributed cloud and edge computing systems. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1277–1287. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, X.; Zhang, X.; Zhang, P.; Hou, Y.T. Cooperative task offloading in three-tier mobile computing networks: An ADMM framework. IEEE Trans. Veh. Technol. 2019, 68, 2763–2776. [Google Scholar] [CrossRef]
- Wei, Y.; Yu, F.R.; Song, M.; Han, Z. Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor–critic deep reinforcement learning. IEEE Internet Things J. 2018, 6, 2061–2073. [Google Scholar] [CrossRef]
- Khan, A.A.; Laghari, A.A.; Shafiq, M.; Awan, S.A.; Gu, Z. Vehicle to Everything (V2X) and Edge Computing: A Secure Lifecycle for UAV-Assisted Vehicle Network and Offloading with Blockchain. Drones 2022, 6, 377. [Google Scholar] [CrossRef]
- Mohajer, A.; Daliri, M.S.; Mirzaei, A.; Ziaeddini, A.; Nabipour, M.; Bavaghar, M. Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Trans. Serv. Comput. 2022, 16, 1225–1238. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, Y.; Guan, K.; Kilper, D. Energy-Optimal Mobile Cloud Computing under Stochastic Wireless Channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569–4581. [Google Scholar] [CrossRef]
- Chen, J.; Xing, H.; Lin, X.; Nallanathan, A.; Bi, S. Joint Resource Allocation and Cache Placement for Location-Aware Multi-User Mobile-Edge Computing. IEEE Internet Things J. 2022, 9, 25698–25714. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, K.; Maharjan, S.; Zhang, Y. Edge intelligence for energy-efficient computation offloading and resource allocation in 5G beyond. IEEE Trans. Veh. Technol. 2020, 69, 12175–12186. [Google Scholar] [CrossRef]
- Huang, P.Q.; Wang, Y.; Wang, K.; Liu, Z.Z. A bilevel optimization approach for joint offloading decision and resource allocation in cooperative mobile edge computing. IEEE Trans. Cybern. 2019, 50, 4228–4241. [Google Scholar] [CrossRef]
- Zeng, S.; Huang, X.; Li, D. Joint Communication and Computation Cooperation in Wireless Powered Mobile Edge Computing Networks with NOMA. IEEE Internet Things J. 2023. [Google Scholar] [CrossRef]
- Karimi, E.; Chen, Y.; Akbari, B. Task offloading in vehicular edge computing networks via deep reinforcement learning. Comput. Commun. 2022, 189, 193–204. [Google Scholar] [CrossRef]
- Zhou, F.; Hu, R.Q. Computation efficiency maximization in wireless-powered mobile edge computing networks. IEEE Trans. Wirel. Commun. 2020, 19, 3170–3184. [Google Scholar] [CrossRef]
- Mukherjee, M.; Kumar, V.; Zhang, Q.; Mavromoustakis, C.X.; Matam, R. Optimal Pricing for Offloaded Hard-and Soft-Deadline Tasks in Edge Computing. IEEE Trans. Intell. Transp. Syst. 2021, 23, 9829–9839. [Google Scholar] [CrossRef]
- Yan, J.; Bi, S.; Duan, L.; Zhang, Y.J.A. Pricing-driven service caching and task offloading in mobile edge computing. IEEE Trans. Wirel. Commun. 2021, 20, 4495–4512. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, S.; Liu, J.; Pan, C.; Yang, L. Profit maximization incentive mechanism for resource providers in mobile edge computing. IEEE Trans. Serv. Comput. 2019, 15, 138–149. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X. Fairness-aware task offloading and resource allocation in cooperative mobile-edge computing. IEEE Internet Things J. 2021, 9, 3812–3824. [Google Scholar] [CrossRef]
- Hejja, K.; Berri, S.; Labiod, H. Network slicing with load-balancing for task offloading in vehicular edge computing. Veh. Commun. 2022, 34, 100419. [Google Scholar] [CrossRef]
- Meng, J.; Tan, H.; Li, X.Y.; Han, Z.; Li, B. Online deadline-aware task dispatching and scheduling in edge computing. IEEE Trans. Parallel Distrib. Syst. 2019, 31, 1270–1286. [Google Scholar] [CrossRef]
- Ren, J.; Yu, G.; Cai, Y.; He, Y. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 2018, 17, 5506–5519. [Google Scholar] [CrossRef]
- Bi, S.; Huang, L.; Wang, H.; Zhang, Y.J.A. Lyapunov-guided deep reinforcement learning for stable online computation offloading in mobile-edge computing networks. IEEE Trans. Wirel. Commun. 2021, 20, 7519–7537. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, W.; Chen, W.; Zheng, Z. Distributed and collective deep reinforcement learning for computation offloading: A practical perspective. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1085–1101. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, K.; Liu, X.; Li, X.; Leung, V.C. Deep reinforcement learning for energy-efficient computation offloading in mobile-edge computing. IEEE Internet Things J. 2021, 9, 1517–1530. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, Y.; Liu, A.; Bhuiyan, M.Z.A.; Zhang, S. Multiagent deep reinforcement learning for vehicular computation offloading in IoT. IEEE Internet Things J. 2020, 8, 9763–9773. [Google Scholar] [CrossRef]
- Ndikumana, A.; Tran, N.H.; Ho, T.M.; Han, Z.; Saad, W.; Niyato, D.; Hong, C.S. Joint communication, computation, caching, and control in big data multi-access edge computing. IEEE Trans. Mob. Comput. 2019, 19, 1359–1374. [Google Scholar] [CrossRef]
- Wen, W.; Cui, Y.; Quek, T.Q.; Zheng, F.C.; Jin, S. Joint optimal software caching, computation offloading and communications resource allocation for mobile edge computing. IEEE Trans. Veh. Technol. 2020, 69, 7879–7894. [Google Scholar] [CrossRef]
- Gong, Y.; Yao, H.; Wang, J.; Li, M.; Guo, S. Edge intelligence-driven joint offloading and resource allocation for future 6G industrial internet of things. IEEE Trans. Netw. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, Z.; Hu, H.; Cimini, L.J.; Li, G.Y. Channel estimation for OFDM. IEEE Commun. Surv. Tutor. 2014, 16, 1891–1908. [Google Scholar] [CrossRef]
- Dong, L.; He, W.; Yao, H. Task Offloading and Resource Allocation for Tasks with Varied Requirements in Mobile Edge Computing Networks. Electronics 2023, 12, 366. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, Y.J. Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wirel. Commun. 2018, 17, 4177–4190. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Huang, T.; Xue, Y.; Peng, K.; Qi, L.; Dou, W. An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 2019, 133, 75–85. [Google Scholar] [CrossRef]
- Fang, C.; Xu, H.; Yang, Y.; Hu, Z.; Tu, S.; Ota, K.; Yang, Z.; Dong, M.; Han, Z.; Yu, F.R.; et al. Deep-reinforcement-learning-based resource allocation for content distribution in fog radio access networks. IEEE Internet Things J. 2022, 9, 16874–16883. [Google Scholar] [CrossRef]
- Fang, C.; Liu, C.; Wang, Z.; Sun, Y.; Ni, W.; Li, P.; Guo, S. Cache-assisted content delivery in wireless networks: A new game theoretic model. IEEE Syst. J. 2020, 15, 2653–2664. [Google Scholar] [CrossRef]
Work | Nodes with Computing Power | Variables to Be Optimized | Objective | Methodology |
---|---|---|---|---|
[7] | Edge Server (ES), Cloud Server (CS) | 5, 1, 2, 3 | DCM | Decomposition and KKT Conditions |
[12] | UD, ES, CS | , 4, | DCM | ADMM |
[13] | ES, CS | , , | DCM | Actor-Critic based DRL |
[29] | UD, ES | , , | DCM | The Lagrange multiplier method |
[18] | UD, ES | , , | ECM | DDPG |
[30] | UD, ES | , , | Computation Rate Maximization | Lyapunov Optimization and DRL |
[26] | ES | , , | Minimize Maximal Delay ratio | Evolutionary Algorithm |
[19] | UD, ES | , | ECM | Ant Colony-based algorithm |
[24] | UD, ES | , 6 | DCM and Revenue Maximization | Stackelberg Game |
[25] | UD, ES | , | ECM and Revenue Maximization | Market Auction Theory |
Our Work | ES | , , | Acceptance Ratio Maximization | WPR |
Notation | Description |
---|---|
the pumping policy deciding the pumping order of the accepted requests | |
the refilling policy deciding the refilling order of the rejected requests | |
the bandwidth fraction allocated to request | |
the computing resource fraction allocated to request | |
the set of accepted requests, current accepted requests, and rejected requests | |
the latest set after the last successful refilling | |
the set of “unpumped requests” and | |
the set of “pumped requests”, according to Equation (11) | |
the Lagrange multipliers obtained with according to Equation (8) | |
the Lagrange multipliers of accepted requests | |
the Lagrange multipliers of accepted requests | |
the cumulative “pumped water” after multiple pumping trials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; He, W.; Liu, Y. Water Pumping and Refilling (WPR): A Resource Allocation Algorithm for Maximizing Acceptance Ratio in Asymmetrical Edge Computing Networks. Symmetry 2023, 15, 985. https://doi.org/10.3390/sym15050985
Dong L, He W, Liu Y. Water Pumping and Refilling (WPR): A Resource Allocation Algorithm for Maximizing Acceptance Ratio in Asymmetrical Edge Computing Networks. Symmetry. 2023; 15(5):985. https://doi.org/10.3390/sym15050985
Chicago/Turabian StyleDong, Li, Wenji He, and Yunjie Liu. 2023. "Water Pumping and Refilling (WPR): A Resource Allocation Algorithm for Maximizing Acceptance Ratio in Asymmetrical Edge Computing Networks" Symmetry 15, no. 5: 985. https://doi.org/10.3390/sym15050985
APA StyleDong, L., He, W., & Liu, Y. (2023). Water Pumping and Refilling (WPR): A Resource Allocation Algorithm for Maximizing Acceptance Ratio in Asymmetrical Edge Computing Networks. Symmetry, 15(5), 985. https://doi.org/10.3390/sym15050985