Building an Equation of State Density Ladder
Abstract
:1. Introduction
2. Chiral Effective Field Theory
3. Parity-Violating Electron Scattering: The Neutron Skin Thickness of Pb
4. LIGO-Virgo: Neutron Star Mergers
5. NICER: Simultaneous Determination of Masses and Radii of Neutron Stars
6. Pulsar Timing: Determination of the Most Massive Neutron Stars
7. Results
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century; The National Academies Press: Washington, DC, USA, 2003.
- Geesaman, D. Reaching for the horizon: The 2015 long range plan for nuclear science. Nucl. Phys. News 2015, 26, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Piekarewicz, J. The Nuclear Physics of Neutron Stars. arXiv 2022, arXiv:2209.14877. [Google Scholar]
- Baym, G. The Golden Era of Neutron Stars: From Hadrons to Quarks. JPS Conf. Proc. 2019, 26, 011001. [Google Scholar] [CrossRef] [Green Version]
- Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars: A review. Rept. Prog. Phys. 2018, 81, 056902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, S. Nuclear forces from chiral Lagrangians. Phys. Lett. B 1990, 251, 288–292. [Google Scholar] [CrossRef]
- Bedaque, P.F.; van Kolck, U. Effective field theory for few nucleon systems. Ann. Rev. Nucl. Part. Sci. 2002, 52, 339–396. [Google Scholar] [CrossRef] [Green Version]
- Epelbaum, E.; Hammer, H.-W.; Meissner, U.-G. Modern Theory of Nuclear Forces. Rev. Mod. Phys. 2009, 81, 1773. [Google Scholar] [CrossRef]
- Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rept. 2011, 503, 1. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Entem, D.; Machleidt, R.; Nosyk, Y. Nucleon-Nucleon Scattering Up to N5LO in Chiral Effective Field Theory. Front. Phys. 2020, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Hebeler, K.; Schwenk, A. Chiral three-nucleon forces and neutron matter. Phys. Rev. 2010, C82, 014314. [Google Scholar] [CrossRef] [Green Version]
- Tews, I.; Kruger, T.; Hebeler, K.; Schwenk, A. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory. Phys. Rev. Lett. 2013, 110, 032504. [Google Scholar] [CrossRef] [Green Version]
- Kruger, T.; Tews, I.; Hebeler, K.; Schwenk, A. Neutron matter from chiral effective field theory interactions. Phys. Rev. 2013, C88, 025802. [Google Scholar] [CrossRef]
- Lonardoni, D.; Tews, I.; Gandolfi, S.; Carlson, J. Nuclear and neutron-star matter from local chiral interactions. Phys. Rev. Res. 2020, 2, 22033. [Google Scholar] [CrossRef]
- Drischler, C.; Furnstahl, R.; Melendez, J.; Phillips, D. How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties. Phys. Rev. Lett. 2020, 125, 202702. [Google Scholar] [CrossRef]
- Drischler, C.; Holt, J.W.; Wellenhofer, C. Chiral Effective Field Theory and the High-Density Nuclear Equation of State. Ann. Rev. Nucl. Part. Sci. 2021, 71, 403. [Google Scholar] [CrossRef]
- Sammarruca, F.; Millerson, R. Analysis of the neutron matter equation of state and the symmetry energy up to fourth order of chiral effective field theory. Phys. Rev. C 2021, 104, 034308. [Google Scholar] [CrossRef]
- Sammarruca, F.; Millerson, R. The Equation of State of Neutron-Rich Matter at Fourth Order of Chiral Effective Field Theory and the Radius of a Medium-Mass Neutron Star. Universe 2022, 8, 133. [Google Scholar] [CrossRef]
- Piekarewicz, J.; Centelles, M. Incompressibility of neutron-rich matter. Phys. Rev. 2009, C79, 054311. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A. Neutron radii in nuclei and the neutron equation of state. Phys. Rev. Lett. 2000, 85, 5296. [Google Scholar] [CrossRef] [Green Version]
- Furnstahl, R.J. Neutron radii in mean-field models. Nucl. Phys. 2002, A706, 85. [Google Scholar] [CrossRef] [Green Version]
- Roca-Maza, X.; Centelles, M.; Viñas, X.; Warda, M. Neutron skin of 208Pb, nuclear symmetry energy, and the parity radius experiment. Phys. Rev. Lett. 2011, 106, 252501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piekarewicz, J.; Fattoyev, F.J. Neutron rich matter in heaven and on Earth. Phys. Today 2019, 72, 30. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, C.J.; Piekarewicz, J. Neutron star structure and the neutron radius of 208pb. Phys. Rev. Lett. 2001, 86, 5647. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, C.J.; Piekarewicz, J. The neutron radii of lead and neutron stars. Phys. Rev. 2001, C64, 062802. [Google Scholar]
- Carriere, J.; Horowitz, C.J.; Piekarewicz, J. Low mass neutron stars and the equation of state of dense matter. Astrophys. J. 2003, 593, 463. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, T.; Dubach, J.; Sick, I. Isospin Dependencies in Parity Violating Electron Scattering. Nucl. Phys. 1989, A503, 589. [Google Scholar] [CrossRef]
- Angeli, I.; Marinova, K. Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 2013, 99, 69. [Google Scholar] [CrossRef]
- Abrahamyan, S.; Ahmed, Z.; Albataineh, H.; Aniol, K.; Armstrong, D.S.; Armstrong, W.; Averett, T.; Babineau, B.; Barbieri, A.; Bellini, V.; et al. Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering. Phys. Rev. Lett. 2012, 108, 112502. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, C.J.; Ahmed, Z.; Jen, C.M.; Rakhman, A.; Souder, P.A.; Dalton, M.M.; Liyanage, N.; Paschke, K.D.; Saenboonruang, K.; Silwal, R.; et al. Weak charge form factor and radius of 208Pb through parity violation in electron scattering. Phys. Rev. 2012, C85, 032501. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.S.; Averett, T.; Barcus, S.; Bellini, V.; Beminiwattha, R.S.; Benesch, J.F.; et al. Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering. Phys. Rev. Lett. 2021, 126, 172502. [Google Scholar] [CrossRef]
- Thiel, M.; Sfienti, C.; Piekarewicz, J.; Horowitz, C.J.; Vanderhaeghen, M. Neutron skins of atomic nuclei: Per aspera ad astra. J. Phys. 2019, G46, 093003. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.T.; Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J. Implications of PREX-II on the equation of state of neutron-rich matter. Phys. Rev. Lett. 2021, 126, 172503. [Google Scholar] [CrossRef]
- Becker, D.; Bucoveanu, R.; Grzesik, C.; Kempf, R.; Imai, K.; Molitor, M.; Tyukin, A.; Zimmermann, M.; Armstrong, D.; Aulenbacher, K.; et al. The P2 experiment. Eur. Phys. J. A 2018, 54, 208. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Hinderer, T. Tidal Love numbers of neutron stars. Astrophys. J. 2008, 677, 1216. [Google Scholar] [CrossRef]
- Hinderer, T.; Lackey, B.D.; Lang, R.N.; Read, J.S. Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. 2010, D81, 123016. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Nagar, A. Relativistic tidal properties of neutron stars. Phys. Rev. 2009, D80, 84035. [Google Scholar] [CrossRef] [Green Version]
- Postnikov, S.; Prakash, M.; Lattimer, J.M. Tidal Love Numbers of Neutron and Self-Bound Quark Stars. Phys. Rev. 2010, D82, 24016. [Google Scholar] [CrossRef] [Green Version]
- Fattoyev, F.J.; Carvajal, J.; Newton, W.G.; Li, B.-A. Constraining the high-density behavior of the nuclear symmetry energy with the tidal polarizability of neutron stars. Phys. Rev. 2013, C87, 015806. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.W.; Gandolfi, S.; Fattoyev, F.J.; Newton, W.G. Using Neutron Star Observations to Determine Crust Thicknesses, Moments of Inertia, and Tidal Deformabilities. Phys. Rev. 2015, C91, 015804. [Google Scholar] [CrossRef] [Green Version]
- Fattoyev, F.J.; Piekarewicz, J.; Horowitz, C.J. Neutron skins and neutron stars in the multi-messenger era. Phys. Rev. Lett. 2018, 120, 172702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psaltis, D.; Özel, F.; Chakrabarty, D. Prospects for Measuring Neutron-Star Masses and Radii with X-ray Pulse Profile Modeling. Astrophys. J. 2014, 787, 136. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.L.; Andersson, N.; Chakrabarty, D.; Feroci, M.; Hebeler, K.; Israel, G.; Lamb, F.K.; Miller, M.C.; Morsink, S.; Ozel, F.; et al. Colloquium: Measuring the neutron star equation of state using x-ray timing. Rev. Mod. Phys. 2016, 88, 021001. [Google Scholar] [CrossRef] [Green Version]
- Hewish, A.; Bell, S.; Pilkington, J.; Scott, P.; Collins, R. Observation of a Rapidly Pulsating Radio Source. Nature 1968, 217, 709. [Google Scholar] [CrossRef]
- Leahy, D.A. Mass-radius constraints from a pulse shape model for hercules x-1. Astrophys. J. 2004, 613, 517. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett. 2021, 918, L27. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Ho, W.C.G.; Lattimer, J.M.; Loewenstein, M.; et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. Astrophys. J. Lett. 2021, 918, L28. [Google Scholar] [CrossRef]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2019, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, E.; Cromartie, H.T.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian, Z.; Guillemot, L.; et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. Astrophys. J. Lett. 2021, 915, L12. [Google Scholar] [CrossRef]
- Guillot, S.; Servillat, M.; Webb, N.A.; Rutledge, R.E. Measurement of the Radius of Neutron Stars with High S/N Quiescent Low-mass X-ray Binaries in Globular Clusters. Astrophys. J. 2013, 772, 7. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, I.I. Fourth test of general relativity. Phys. Rev. Lett. 1964, 13, 789. [Google Scholar] [CrossRef]
- Romani, R.W.; Kandel, D.; Filippenko, A.V.; Brink, T.G.; Zheng, W. PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron Star. Astrophys. J. Lett. 2022, 934, L18. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. 2020, 896, L44. [Google Scholar] [CrossRef]
- Margalit, B.; Metzger, B.D. Constraining the Maximum Mass of Neutron Stars From Multi-Messenger Observations of GW170817. Astrophys. J. 2017, 850, L19. [Google Scholar] [CrossRef]
- Salinas, M.; Piekarewicz, J. Bayesian refinement of covariant energy density functionals. arXiv 2023, arXiv:2301.09692. [Google Scholar] [CrossRef]
- Walecka, J.D. A theory of highly condensed matter. Ann. Phys. 1974, 83, 491. [Google Scholar] [CrossRef]
- Boguta, J.; Bodmer, A.R. Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. 1977, A292, 413. [Google Scholar] [CrossRef]
- Serot, B.D.; Walecka, J.D. The relativistic nuclear many body problem. Adv. Nucl. Phys. 1986, 16, 1. [Google Scholar]
- Mueller, H.; Serot, B.D. Relativistic mean-field theory and the high-density nuclear equation of state. Nucl. Phys. 1996, A606, 508. [Google Scholar] [CrossRef] [Green Version]
- Serot, B.D.; Walecka, J.D. Recent progress in quantum hadrodynamics. Int. J. Mod. Phys. 1997, E6, 515. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, P.; Godbey, K.; Bonilla, E.; Viens, F.; Piekarewicz, J. Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method. Front. Phys. 2023, 10, 1054524. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Piekarewicz, J. Impact of spin-orbit currents on the electroweak skin of neutron-rich nuclei. Phys. Rev. 2012, C86, 045503. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Piekarewicz, J. Building relativistic mean field models for finite nuclei and neutron stars. Phys. Rev. 2014, C90, 044305. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Piekarewicz, J. Searching for isovector signatures in the neutron-rich oxygen and calcium isotopes. Phys. Lett. 2015, B748, 284. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.A.; Armstrong, D.S.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.K.; Bellini, V.; Beminiwattha, R.S.; et al. Precision Determination of the Neutral Weak Form Factor of Ca48. Phys. Rev. Lett. 2022, 129, 042501. [Google Scholar] [CrossRef]
- Piekarewicz, J.; Agrawal, B.; Colò, G.; Nazarewicz, W.; Paar, N.; Reinhard, P.G.; Roca-Maza, X.; Vretenar, D. Electric dipole polarizability and the neutron skin. Phys. Rev. 2012, C85, 041302(R). [Google Scholar] [CrossRef] [Green Version]
- Piekarewicz, J. Implications of PREX-2 on the electric dipole polarizability of neutron-rich nuclei. Phys. Rev. C 2021, 104, 024329. [Google Scholar] [CrossRef]
- Gamba, R.; Breschi, M.; Bernuzzi, S.; Agathos, M.; Nagar, A. Waveform systematics in the gravitational-wave inference of tidal parameters and equation of state from binary neutron star signals. Phys. Rev. D 2021, 103, 124015. [Google Scholar] [CrossRef]
- Lindblom, L. Determining the nuclear equation of state from neutron-star masses and radii. Astrophys. J. 1992, 398, 569. [Google Scholar] [CrossRef]
Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
FSUGold2 | 497.479 | 782.500 | 763.000 | 108.094 | 183.789 | 80.466 | 3.0029 | −0.000533 | 0.025600 | 0.000823 |
FSUGarnet | 496.939 | 782.500 | 763.000 | 110.349 | 187.695 | 192.927 | 3.2600 | −0.003551 | 0.023500 | 0.043377 |
FSUGold2+R | 501.611 | 782.500 | 763.000 | 103.760 | 169.410 | 128.301 | 3.7924 | −0.010635 | 0.011660 | 0.031621 |
FSUGarnet+R | 495.633 | 782.500 | 763.000 | 109.130 | 186.481 | 142.966 | 3.2593 | −0.003285 | 0.023812 | 0.038274 |
Model () | ||||
FSUGold2 | 5.491(6) | 5.801(19) | 0.310(16) | 0.285(15) |
FSUGold2+R | 5.517(4) | 5.743(05) | 0.226(03) | 0.203(03) |
Experiment | 5.501(1) | 5.800(75) | 0.299(75) | 0.283(71) |
Model () | ||||
FSUGold2 | 3.426(3) | 3.707(07) | 0.281(08) | 0.231(08) |
FSUGold2+R | 3.477(8) | 3.722(09) | 0.245(02) | 0.197(02) |
Experiment | 3.477(2) | 3.636(35) | 0.159(35) | 0.121(35) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas, M.; Piekarewicz, J. Building an Equation of State Density Ladder. Symmetry 2023, 15, 994. https://doi.org/10.3390/sym15050994
Salinas M, Piekarewicz J. Building an Equation of State Density Ladder. Symmetry. 2023; 15(5):994. https://doi.org/10.3390/sym15050994
Chicago/Turabian StyleSalinas, Marc, and Jorge Piekarewicz. 2023. "Building an Equation of State Density Ladder" Symmetry 15, no. 5: 994. https://doi.org/10.3390/sym15050994
APA StyleSalinas, M., & Piekarewicz, J. (2023). Building an Equation of State Density Ladder. Symmetry, 15(5), 994. https://doi.org/10.3390/sym15050994