Some Fixed-Point Results for the KF-Iteration Process in Hyperbolic Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (Ref. [18]) Quasi-nonexpansive if for all and where is the set of all fixed points of S;
- (ii)
- (Ref. [19]) Mean nonexpansive mapping if, for all there exist with such that
- (iii)
- (Ref. [20], p. 1089) Suzuki-generalized nonexpansive (or satisfy condition ) if for all
- (iv)
- (Ref. [21], Definition 2) Satisfy condition if for all
- (v)
- (Ref. [9], Definition 3.1) Generalized -nonexpansive mapping if, for all there exists such that
3. Weak -Stability and Data Dependence Results
4. Convergence Results
5. Numerical Example
- (i)
- Because S is not continuous at the point S is not a nonexpansive mapping.
- (ii)
- Let and Then,
- (iii)
- Let and . Then,
- (iv)
- Now, we prove that S is a generalized -nonexpansive type 1 mapping. For this purpose, let and consider the following cases:
- Case A: Then, which gives two possibilities:
- (1)
- Let . Then,
- (a)
- If then we have
- (b)
- If then we have
- (2)
- Let . Then, , which is already included in case (1)(a).
- Case B: Then, which gives two possibilities:
- (1)
- Let . Then, So,
- (2)
- Let . Then,
- (a)
- If then we have
- (b)
- is already included in case (1).
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Abbas, M.; Nazır, T. A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 2014, 66, 223–234. [Google Scholar]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat 2016, 30, 2711–2720. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 2016, 275, 147–155. [Google Scholar] [CrossRef]
- Ullah, K.; Arshad, M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat 2018, 32, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Pant, R.; Shukla, R. Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces. Numer. Funct. Anal. Opt. 2017, 8, 248–266. [Google Scholar] [CrossRef]
- Shukla, R.; Pant, R.; De la Sen, M. Generalized α-nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2017, 4, 2511–2528. [Google Scholar] [CrossRef] [Green Version]
- Lamba, P.; Panwar, A. A Picard S★ iterative algorithm for approximating fixed points of generalized α-nonexpansive mappings. J. Math. Comput. Sci. 2021, 11, 2874–2892. [Google Scholar]
- Beg, I.; Abbas, M.; Asghar, M.W. Convergence of AA-iterative algorithm for generalized α-nonexpansive mappings with an application. Mathematics 2022, 10, 4375. [Google Scholar]
- Şahin, A.; Başarır, M. Some new results for the J-iterative scheme in Kohlenbach hyperbolic space. Konuralp J. Math. 2022, 10, 210–219. [Google Scholar]
- Bin Dehaish, B.A.; Alharbi, R.K. On fixed point results for some generalized nonexpansive mappings. AIMS Math. 2023, 8, 5763–5778. [Google Scholar] [CrossRef]
- Akutsah, F.; Narain, O.K. On generalized (α,β)-nonexpansive mappings in Banach spaces with applications. Nonlinear Funct. Anal. Appl. 2021, 26, 663–684. [Google Scholar]
- Ullah, K.; Ahmad, J.; Khan, F.M. Numerical reckoning fixed points via new faster iteration process. Appl. Gen. Topol. 2022, 23, 213–223. [Google Scholar] [CrossRef]
- Temir, S.; Korkut, Ö. Approximating fixed points of generalized α-nonexpansive mappings by the new iteration process. J. Math. Sci. Model. 2022, 5, 35–39. [Google Scholar]
- Diaz, J.B.; Metcalf, F.T. On the structure of the set of subsequential limit points of successive approximations. Bull. Am. Math. Soc. 1967, 73, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. About fixed point theory for mean nonexpansive mapping in Banach spaces. J. Sichuan Normal Univ. Nat. Sci. 1975, 2, 67–68. [Google Scholar]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Falset, J.G.; Fuster, E.L.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Cardinali, T.; Rubbioni, P. A generalization of the Caristi fixed point theorem in metric spaces. Fixed Point Theory 2010, 11, 3–10. [Google Scholar]
- Timiş, I. On the weak stability of Picard iteration for some contractive type mappings. Annal. Uni. Craiova Math. Comput. Sci. Ser. 2010, 37, 106–114. [Google Scholar]
- Reich, S.; Shafrir, I. Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 1990, 15, 537–558. [Google Scholar] [CrossRef]
- Kohlenbach, U. Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 2004, 357, 89–128. [Google Scholar] [CrossRef] [Green Version]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Bridson, M.; Haefliger, A. Metric Spaces of Non-Positive Curvature; Springer: Berlin, Germany, 1999. [Google Scholar]
- Takahashi, W. A convexity in metric spaces and nonexpansive mappings. Kodai Math. Semin. Rep. 1970, 22, 142–149. [Google Scholar] [CrossRef]
- Shimizu, T.; Takahashi, W. Fixed points of multivalued mappings in certain convex metric spaces. Topol. Methods Nonlinear Anal. 1996, 8, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.C. Remarks on some fixed point theorems. Proc. Am. Math. Soc. 1976, 60, 179–182. [Google Scholar] [CrossRef]
- Leustean, L. Nonexpansive iterations in uniformly convex W-hyperbolic spaces. In Nonlinear Analysis and Optimization I: Nonlinear Analysis; Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A.J., Eds.; Contemporary Mathematics; Israel Math. Conf. Proc.; American Mathematical Society: Providence, RI, USA; Bar Ilan University: Ramat-Gan, Israel, 2010; Volume 513, pp. 193–210. [Google Scholar]
- Khan, A.R.; Fukhar-ud-din, H.; Khan, M.A.A. An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces. Fixed Point Theory Appl. 2012, 2012, 54. [Google Scholar] [CrossRef] [Green Version]
- Şoltuz, Ş.M.; Grosan, T. Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory Appl. 2008, 2008, 242916. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V. Iterative Approximation of Fixed Points; Springer: Berlin, Germany, 2007. [Google Scholar]
- Senter, H.F.; Dotson, W.G. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974, 44, 370–385. [Google Scholar] [CrossRef]
Iteration Number | Agarwal | Abbas | Thakur | Thakur New | M | KF |
---|---|---|---|---|---|---|
1 | 50,000 | 50,000 | 50,000 | 50,000 | 50,000 | 50,000 |
2 | 20,732.8971 | 9646.8733 | 8638.7071 | 19,633.4253 | 8220.2230 | 8021.1525 |
3 | 8498.7280 | 1977.8457 | 1475.4736 | 7265.5898 | 1288.3740 | 1196.8442 |
4 | 3431.1309 | 420.5066 | 248.2010 | 2538.4195 | 193.5658 | 167.0390 |
5 | 1361.5599 | 91.3799 | 41.0385 | 839.4244 | 28.0043 | 21.9129 |
6 | 530.5461 | 20.1147 | 6.6629 | 263.4896 | 3.9164 | 2.7135 |
7 | 202.9269 | 4.4589 | 1.0618 | 78.7354 | 0.5312 | 0 |
8 | 76.1902 | 0.9915 | 0 | 22.4611 | 0 | 0 |
9 | 28.0879 | 0 | 0 | 6.1336 | 0 | 0 |
10 | 10.1715 | 0 | 0 | 1.6074 | 0 | 0 |
11 | 3.6200 | 0 | 0 | 0 | 0 | 0 |
12 | 1.2669 | 0 | 0 | 0 | 0 | 0 |
13 | 0.2399 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şahin, A.; Öztürk, E.; Aggarwal, G. Some Fixed-Point Results for the KF-Iteration Process in Hyperbolic Metric Spaces. Symmetry 2023, 15, 1360. https://doi.org/10.3390/sym15071360
Şahin A, Öztürk E, Aggarwal G. Some Fixed-Point Results for the KF-Iteration Process in Hyperbolic Metric Spaces. Symmetry. 2023; 15(7):1360. https://doi.org/10.3390/sym15071360
Chicago/Turabian StyleŞahin, Aynur, Emre Öztürk, and Gaurav Aggarwal. 2023. "Some Fixed-Point Results for the KF-Iteration Process in Hyperbolic Metric Spaces" Symmetry 15, no. 7: 1360. https://doi.org/10.3390/sym15071360
APA StyleŞahin, A., Öztürk, E., & Aggarwal, G. (2023). Some Fixed-Point Results for the KF-Iteration Process in Hyperbolic Metric Spaces. Symmetry, 15(7), 1360. https://doi.org/10.3390/sym15071360